Abstract
We propose a united-residue model of membrane proteins to investigate the structures of helix bundle membrane proteins (HBMPs) using coarse-grained (CG) replica exchange Monte-Carlo (REMC) simulations. To demonstrate the method, it is used to identify the ground state of HBMPs in a CG model, including bacteriorhodopsin (BR), halorhodopsin (HR), and their subdomains. The rotational parameters of transmembrane helices (TMHs) are extracted directly from the simulations, which can be compared with their experimental measurements from site-directed dichroism. In particular, the effects of amphiphilic interaction among the surfaces of TMHs on the rotational angles of helices are discussed. The proposed CG model gives a reasonably good structure prediction of HBMPs, as well as a clear physical picture for the packing, tilting, orientation, and rotation of TMHs. The root mean square deviation (RMSD) in coordinates of Cα atoms of the ground state CG structure from the X-ray structure is 5.03 Å for BR and 6.70 Å for HR. The final structure of HBMPs is obtained from the all-atom molecular dynamics simulations by refining the predicted CG structure, whose RMSD is 4.38 Å for BR and 5.70 Å for HR.





Similar content being viewed by others
References
Gerstein M (1998) Patterns of protein-fold usage in fight microbial genomes: a comprehensive structural census. Proteins 33(4):518–534
Wallin E, von Heijne G (1998) Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci 7(4):1029–1038
Krogh A, Larsson B, von Heijne G, Sonnhammer ELL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305(3):567–580. doi:10.1006/jmbi.2000.4315
White SH, Wimley WC (1999) Membrane protein folding and stability: physical principles. Annu Rev Biophys Biomol Struct 28:319–365
Drews J (2000) Drug discovery: a historical perspective. Science 287(5460):1960–1964
Filmore D (2004) It’s a GPCR world. Mod Drug Discov 7:24–26
Bowie JU (2005) Solving the membrane protein folding problem. Nature 438(7068):581–589. doi:10.1038/nature04395
Milik M, Skolnick J (1992) Spontaneous insertion of polypeptide-chains into membranes—a Monte-Carlo model. Proc Natl Acad Sci USA 89(20):9391–9395
Chen CM (2001) Lattice model of transmembrane polypeptide folding. Phys Rev E 63(1):010901. doi:10.1103/PhysRevE.63.010901
Floriano WB, Vaidehi N, Goddard WA, Singer MS, Shepherd GM (2000) Molecular mechanisms underlying differential odor responses of a mouse olfactory receptor. Proc Natl Acad Sci USA 97(20):10712–10716
Dobbs H, Orlandini E, Bonaccini R, Seno F (2002) Optimal potentials for predicting inter-helical packing in transmembrane proteins. Proteins 49(3):342–349. doi:10.1002/prot.10229
Chen CM, Chen CC (2003) Computer Simulations of membrane protein folding: structure and dynamics. Biophys J 84(3):1902–1908
Kokubo H, Okamoto Y (2004) Self-assembly of transmembrane helices of bacteriorhodopsin by a replica-exchange Monte Carlo simulation. Chem Phys Lett 392(1–3):168–175. doi:10.1016/j.cplett.2004.04.112
Chen CC, Chen CM (2009) A dual-scale approach toward structure prediction of retinal proteins. J Struct Biol 165(1):37–46. doi:10.1016/j.jsb.2008.10.001
Chen CC, Wei CC, Sun YC, Chen CM (2008) Packing of transmembrane helices in bacteriorhodopsin folding: structure and thermodynamics. J Struct Biol 162(2):237–247. doi:10.1016/j.jsb.2008.01.003
Popot JL, Engelman DM (1990) Membrane protein folding and oligomerization: the two-stage model. Biochemistry 29(17):4031–4037
Popot JL, Engelman DM (2000) Helical membrane protein folding, stability, and evolution. Annu Rev Biochem 69:881–922
Booth P, Curran A (1999) Membrane protein folding. Curr Opin Struct Biol 9(1):115–121
Pappu RV, Marshall GR, Ponder JW (1999) A potential smoothing algorithm accurately predicts transmembrane helix packing. Nat Struct Biol 6(1):50–55
Rees D, DeAntonio L, Eisenberg D (1989) Hydrophobic organization of membrane proteins. Science 245(4917):510–513
Ulmschneider MB, Sansom MSP, Di Nola A (2005) Properties of integral membrane protein structures: derivation of an implicit membrane potential. Proteins 59(2):252–265. doi:10.1002/prot.20334
Pilpel Y, Ben-Tal N, Lancet D (1999) kPROT: a knowledge-based scale for the propensity of residue orientation in transmembrane segments. Application to membrane protein structure prediction. J Mol Biol 294(4):921–935. doi:10.1006/jmbi.1999.3257
Adamian L, Nanda V, DeGrado WF, Liang J (2005) Empirical lipid propensities of amino acid residues in multispan alpha helical membrane proteins. Proteins 59(3):496–509. doi:10.1002/prot.20456
Adamian L, Liang J (2001) Helix–helix packing and interfacial pairwise interactions of residues in membrane proteins. J Mol Biol 311(4):891–907. doi:10.1006/jmbi.2001.4908
Choma C, Gratkowski H, Lear JD, DeGrado WF (2000) Asparagine-mediated self-association of a model transmembrane helix. Nat Struct Biol 7(2):161–166. doi:10.1038/72440
Gratkowski H, Lear JD, DeGrado WF (2001) Polar side chains drive the association of model transmembrane peptides. Proc Natl Acad Sci USA 98(3):880–885. doi:10.1073/pnas.98.3.880
Yarov-Yarovoy V, Schonbrun J, Baker D (2006) Multipass membrane protein structure prediction using Rosetta. Proteins 62(4):1010–1025. doi:10.1002/prot.20817
Stevens TJ, Arkin IT (1999) Are membrane proteins “inside–out” proteins? Proteins 36(1):135–143. doi:10.1002/(SICI)1097-0134(19990701)36:1<135::AID-PROT11>3.0.CO;2-I
Barth P (2010) Prediction of three-dimensional transmembrane helical protein structures. In: Frishman D (ed) Structural bioinformatics of membrane proteins. SpringerWienNewYork, New York
Lee J, Wu S, Zhang Y (2009) Ab initio protein structure prediction. In: Rigden DJ (ed) From protein structure to function with bioinformatics. Springer, New York
Trabanino RJ, Hall SE, Vaidehi N, Floriano WB, Kam VW, Goddard WA III (2004) First principles predictions of the structure and function of G-protein-coupled receptors: validation for bovine rhodopsin. Biophys J 86(4):1904–1921. doi:10.1016/S0006-3495(04)74256-3
Arkin IT, MacKenzie KR, Brunger AT (1997) Site-directed dichroism as a method for obtaining rotational and orientational constraints for oriented polymers. J Am Chem Soc 119(38):8973–8980
Zheng L, Herzfeld J (1992) NMR studies of retinal proteins. J Bioenerg Biomembr 24(2):139–146
Hansmann UHE (1997) Parallel tempering algorithm for conformational studies of biological molecules. Chem Phys Lett 281:140–150
Case DA, Cheatham TE III, Darden T, Gohlke H, Luo R, Merz KM Jr, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) The Amber biomolecular simulation programs. J Comput Chem 26(16):1668–1688. doi:10.1002/jcc.20290
Nolting B (2005) Protein folding kinetics: biophysical methods. Springer, New York
Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157(1):105–132. doi:10.1016/0022-2836(82)90515-0
Rose GD, Wolfenden R (1993) Hydrogen bonding, hydrophobicity, packing, and protein folding. Annu Rev Biophys Biomol Struct 22:381–415. doi:10.1146/annurev.bb.22.060193.002121
Huschilt J, Hodges R, Davis J (1985) Phase equilibria in an amphiphilic peptide-phospholipid model membrane by deuterium nuclear magnetic resonance difference spectroscopy. Biochemistry 24(6):10
Subczynski WK, Lewis RN, McElhaney RN, Hodges RS, Hyde JS, Kusumi A (1998) Molecular organization and dynamics of 1-palmitoyl-2-oleoylphosphatidylcholine bilayers containing a transmembrane alpha-helical peptide. Biochemistry 37(9):3156–3164. doi:10.1021/bi972148+
May S, Ben-Shaul A (1999) Molecular theory of lipid-protein interaction and the l-alpha-H-II transition. Biophys J 76(2):751–767
McLean LR, Hagaman KA, Owen TJ, Krstenansky JL (1991) Minimal peptide length for interaction of amphipathic alpha-helical peptides with phosphatidylcholine liposomes. Biochemistry 30(1):31–37
Kiyota T, Lee S, Sugihara G (1996) Design and synthesis of amphiphilic alpha-helical model peptides with systematically varied hydrophobic-hydrophilic balance and their interaction with lipid- and bio-membranes. Biochemistry 35(40):13196–13204. doi:10.1021/bi961289t
For simplicity, the HI vector of AFs only contains 5 elements. For an AF with 6 residues, its HI vector would be simplified to be <(HI1+HI2) ×0.5, (HI2+HI3) ×0.5, (HI3+HI4) ×0.5, (HI4+HI5) ×0.5, (HI5+HI6) ×0.5>
There are three conditions for the j1-th AF of helix i1 and the j2-th AF of helix i2 to have proper contact: (1) the distance between these two helices is less than 30 Å, (2) there is no other helix in between them, and (3) the distance between j1-th AF and j2-th AF are the shortest in all 16 AF pairs between these two helices
Nina M, Roux B, Smith JC (1995) Functional interactions in bacteriorhodopsin: a theoretical analysis of retinal hydrogen bonding with water. Biophys J 68(1):25–39. doi:10.1016/S0006-3495(95)80184-0
Baudry J, Crouzy S, Roux B, Smith JC (1999) Simulation analysis of the retinal conformational equilibrium in dark-adapted bacteriorhodopsin. Biophys J 76(4):1909–1917
Swendsen RH, Wang JS (1986) Replica Monte Carlo simulation of spin glasses. Phys Rev Lett 57(21):2607–2609
Kofke DA (2002) On the acceptance probability of replica-exchange Monte Carlo trials. J Chem Phys 117(15):6911–6914. doi:10.1063/11507776
Tajkhorshid E, Paizs B, Suhai S (1999) Role of isomerization barriers in the pK(a) control of the retinal Schiff base: a density functional study. J Phys Chem B 103(21):4518–4527
Tsong TY (1990) Electrical modulation of membrane proteins: enforced conformational oscillations and biological energy and signal transductions. Annu Rev Biophys Biophys Chem 19:83–106. doi:10.1146/annurev.bb.19.060190.000503
Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181(96):223–230
Huang KS, Bayley H, Liao MJ, London E, Khorana HG (1981) Refolding of an integral membrane protein. Denaturation, renaturation, and reconstitution of intact bacteriorhodopsin and two proteolytic fragments. J Biol Chem 256(8):3802–3809
London E, Khorana HG (1982) Denaturation and renaturation of bacteriorhodopsin in detergents and lipid-detergent mixtures. J Biol Chem 257(12):7003–7011
Acknowledgments
This work is supported by the National Science Council of Taiwan under grant of no. NSC 97-2112-M-003-005-MY2.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Wu, HH., Chen, CC. & Chen, CM. Replica exchange Monte-Carlo simulations of helix bundle membrane proteins: rotational parameters of helices. J Comput Aided Mol Des 26, 363–374 (2012). https://doi.org/10.1007/s10822-012-9562-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10822-012-9562-1