Abstract
Sialyldisaccharides are significant terminal components of glycoconjugates and their negative charge and conformation are extensively utilized in molecular recognition processes. The conformation and flexibility of four biologically important sialyldisaccharides [Neu5Acα(2-3)Gal, Neu5Acα(2-6)Gal, Neu5Acα(2-8)Neu5Ac and Neu5Acα(2-9)Neu5Ac] are studied using Molecular Dynamics simulations of 20 ns duration to deduce the conformational preferences of the sialyldisaccharides and the interactions which stabilize the conformations. This study clearly describes the possible conformational models of sialyldisaccharides deduced from 20 ns Molecular Dynamics simulations and our results confirm the role of water in the structural stabilization of sialyldisaccharides. An extensive analysis on the sialyldisaccharide structures available in PDB also confirms the conformational regions found by experiments are detected in MD simulations of 20 ns duration. The three dimensional structural coordinates for all the MD derived sialyldisaccharide conformations are deposited in the 3DSDSCAR database and these conformational models will be useful for glycobiologists and biotechnologists to understand the biological functions of sialic acid containing glycoconjugates.










Similar content being viewed by others
References
Paulson JC (1989) Trends Biochem Sci 14:272–276
Varki A (1993) Glycobiology 3:97–130
Karlsson KA (1995) Curr Opin Struct Biol 5:622–635
Denarie J, Debelle F, Prome JC (1996) Annu Rev Biochem 65:503–535
Dwek RA (1996) Chem Rev 96:683–720
Gahmberg CG, Tolvanen M (1996) Trends Biochem Sci 21:308–311
Sharon N, Weis W (1998) Curr Opin Struct Biol 8:545–547
Muramatsu T (2000) Glycoconj J 17:577–595
Yamashita K, Fukushima K (2004) Glycoconj J 21:31–34
Zhao YY, Takahashi M, Jian-Guo G, Miyoshi E, Matsumoto A, Kitazumae S, Taniguchi N (2008) Cancer Sci 99:1304–1310
Dnistrian AM, Schwartz MK, Katopodis N, Fracchia AA, Stock CC (2006) Cancer 50:1815–1819
Olofsson S, Bergstrom T (2005) Ann Med 37:154–172
Schauer R, Kamerling JP (1997) In Montreuil J, Vliegenthart JFG, Schachter H (eds) Glycoproteins II. Elsevier, Amsterdam
Brocca P, Bernardi A, Raimondi L, Sonnino S (2000) Glycoconj J 17:283–299
Schauer R (2004) Zoology 107:49–64
Hedlund M, Ng E, Varki A, Varki NM (2008) Cancer Res 68:388–394
Yasukawa Z, Sato C, Kitajima K (2005) Glycobiology 15:237–827
Stuart A, Brown DK (2007) J Gen Virol 88:177–186
Mahal LK, Charter NW, Angata K, Fukuda M, Koshland DE Jr, Bertozzi CR (2001) Science 294:380–382
Gagneux P, Cheriyan M, Hurtado-Ziola N, Brinkman van der Linden ECM, Anderson D, McClure H, Varki A, Varki NM (2003) J Biol Chem 278:48245–48250
Shah SH, Telang SD, Shah PM, Patel PS (2008) Glycoconj J 25:279–290
Schwardt O, Gathje H, Vedani A, Mesch S, Gao GP, Spreafico M, von Orelli J, Kelm S, Ernst B (2009) J Med Chem 52:989–1004
Varki A (1997) FASEB J 11:248–255
Ulloa F, Real FX (2001) J Histochem Cytochem 49:501–509
Nam HJ, Gurda-Whitaker B, Gan WY, Ilaria S, McKenna R, Mehta P, Alvarez RA, Agbandje-McKenna M (2006) J Biol Chem 281:25670–25677
Muhlenhoff M, Eckhardt M, Gerardy-Schahn R (1998) Curr Opin Struct Biol 8:558–564
Woods RJ (1995) Curr Opin Struct Biol 5:591–598
Perez S, Kouwijzer M, Mazeau K, Engelsen SB (1996) J Mol Graph 14:307–321
Imberty A (1997) Curr Opin Struct Biol 7:617–623
Karplus M, McCammon A (2002) Nat Struct Biol 9:646–652
Imberty A, Perez S (2000) Chem Rev 100:4567–4588
Momany FA, Willet JL (2000) Carbohydr Res 326:194–209
Momany FA, Willet JL (2000) Carbohydr Res 326:210–226
Kolgelberg H, Rutherford TJ (1994) Glycobiology 4:49–57
Kony DB, Damm W, Stoll S, van Gunsteren WF, Hunnenberger PH (2007) Biophys J 93:442–455
Suresh MX, Veluraja K (2003) J Theor Biol 222:389–402
Margulis CJ, Veluraja K (2005) J Biomol Struct Dyn 23:101–111
Arnott S, Scott WE (1972) J Chem Soc Perkin Trans I(2):324–335
Flippen JL (1973) Acta Crystallogr Sect B B29:1881–1886
Case DA, Darden TA, Cheatham TE, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Pearlman DA, Crowley M, Walker RC, Zhang W, Wang B, Hayik S, Roitberg A, Seabra G, Wong KF, Paesani F, Wu Brozell S, Tsui V, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Beroza P, Mathews DH, Schafmeister C, Ross WS, Kollman PA (2006) AMBER 9. University of California, San Francisco
Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) J Comput Chem 26:1781–1802
Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14:33–38
Veluraja K, Rao VSR (1983) Carbohydr Polym 3:175–192
Kraulis PJ (1992) J Appl Crystallogr 24:946–950
Vasudevan SV, Balaji PV (2002) Biopolymers 63:168–180
Wright CS (1990) J Mol Biol 215:635–651
Ban M, Yoon HJ, Demirkan E, Utsumi S, Mikami B, Yagi F (2005) J Mol Biol 351:695–706
Gaulska SP, Geyer H, Bleckmann C, Rohrich RC, Maass K, Bergfeld AK, Muhlenhoff M, Geyer R (2010) Anal Chem 82:2059–2066
Cheng M, Lin C, Lin H, Yu Y, Wu S (2004) Glycobiology 14:147–155
Azurmendi HF, Vionnet J, Wrightson L, Trinh LB, Shiloach J, Freedberg DI (2007) Proc Natl Acad Sci 104:11557–11561
Inoue Y, Inoue S (1999) Pure Appl Chem 71:789–800
Gregoriadis G, Fernandes A, Mital M, McCormack B (2000) Cell Mol Life Sci 57:1964–1969
Baumann H, Brisson J, Michon F, Pon R, Jennings HJ (1993) Biochemistry 32:4007–4013
Acknowledgments
JFAS and TRKP acknowledge the Junior Research Fellowship from the Department of Science and Technology (SR/S0/BB-53/2003) and the Department of Biotechnology (BT/PR4251/BID/07/068/2003). JFAS, TRKP and KV acknowledge the use of Bioinformatics Centre in the Department of Physics, Manonmaniam Sundaranar University (BT/BI/25/001/2006) funded by DBT.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Selvin, J.F.A., Priyadarzini, T.R.K. & Veluraja, K. Sialyldisaccharide conformations: a molecular dynamics perspective. J Comput Aided Mol Des 26, 375–385 (2012). https://doi.org/10.1007/s10822-012-9563-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10822-012-9563-0