Skip to main content
Log in

Prediction of trypsin/molecular fragment binding affinities by free energy decomposition and empirical scores

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Two families of binding affinity estimation methodologies are described which were utilized in the SAMPL3 trypsin/fragment binding affinity challenge. The first is a free energy decomposition scheme based on a thermodynamic cycle, which included separate contributions from enthalpy and entropy of binding as well as a solvent contribution. Enthalpic contributions were estimated with PM6-DH2 semiempirical quantum mechanical interaction energies, which were modified with a statistical error correction procedure. Entropic contributions were estimated with the rigid-rotor harmonic approximation, and solvent contributions to the free energy were estimated with several different methods. The second general methodology is the empirical score LISA, which contains several physics-based terms trained with the large PDBBind database of protein/ligand complexes. Here we also introduce LISA+, an updated version of LISA which, prior to scoring, classifies systems into one of four classes based on a ligand’s hydrophobicity and molecular weight. Each version of the two methodologies (a total of 11 methods) was trained against a compiled set of known trypsin binders available in the Protein Data Bank to yield scaling parameters for linear regression models. Both raw and scaled scores were submitted to SAMPL3. Variants of LISA showed relatively low absolute errors but also low correlation with experiment, while the free energy decomposition methods had modest success when scaling factors were included. Nonetheless, re-scaled LISA yielded the best predictions in the challenge in terms of RMS error, and six of these models placed in the top ten best predictions by RMS error. This work highlights some of the difficulties of predicting binding affinities of small molecular fragments to protein receptors as well as the benefit of using training data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Andrusier N, Mashiach E, Nussinov R, Wolfson HJ (2008) Proteins Struct Func Bioinfo 73(2):271

    Article  CAS  Google Scholar 

  2. Halperin I, Ma BY, Wolfson H, Nussinov R (2002) Proteins Struct Func Genet 47(4):409

    Article  CAS  Google Scholar 

  3. Leach AR, Shoichet BK, Peishoff CE (2006) J Med Chem 49(20):5851

    Article  CAS  Google Scholar 

  4. Warren GL, Andrews CW, Capelli AM, Clarke B, LaLonde J, Lambert MH, Lindvall M, Nevins N, Semus SF, Senger S, Tedesco G, Wall ID, Woolven JM, Peishoff CE, Head MS (2006) J Med Chem 49(20):5912

    Article  CAS  Google Scholar 

  5. Kolb P, Irwin JJ (2009) Curr Top Med Chem 9(9):755

    Article  CAS  Google Scholar 

  6. Deng YQ, Roux B (2009) J Phys Chem B 113(8):2234

    Article  CAS  Google Scholar 

  7. Faver JC, Benson ML, He X, Roberts BP, Wang B, Marshall MS, Sherrill CD, Merz KM (2011) PLoS ONE 6(4):e18868

  8. Faver JC, Benson ML, He X, Roberts BP, Wang B, Marshall MS, Kennedy MR, Sherrill DC, Merz KM (2011) J Chem Theor Comput 7(3):790

    Article  CAS  Google Scholar 

  9. Merz KM (2010) J Chem Theor Comput 6(5):1769

    Article  CAS  Google Scholar 

  10. Zheng Z, Merz KM (2011) J Chem Inf Model 51(6):1296

    Article  CAS  Google Scholar 

  11. Benson ML, Smith RD, Khazanov NA, Dimcheff B, Beaver J, Dresslar P, Nerothin J, Carlson HA (2008) Nucleic Acids Res 36:D674

    Article  CAS  Google Scholar 

  12. Hu LG, Benson ML, Smith RD, Lerner MG, Carlson HA (2005) Proteins Struct Func Bioinf 60(3):333

    Article  CAS  Google Scholar 

  13. Glide. Version 5.7. New York, NY: Schrödinger, LLC; 2011

  14. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) J Med Chem 47(7):1739

    Article  CAS  Google Scholar 

  15. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) J Med Chem 49(21):6177

    Article  CAS  Google Scholar 

  16. Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL (2004) J Med Chem 47(7):1750

    Article  CAS  Google Scholar 

  17. Park MS, Gao C, Stern HA (2011) Proteins Struct Func Bioinf 79(1):304

    Article  CAS  Google Scholar 

  18. Stewart JJP (2008) MOPAC2009. Colorado. Stewart Computational Chemistry, Springs, CO, USA

  19. Korth M, Pitonak M, Rezac J, Hobza P (2010) J Chem Theor Comput 6(1):344

    Article  CAS  Google Scholar 

  20. Fanfrlik J, Bronowska AK, Rezac J, Prenosil O, Konvalinka J, Hobza P (2010) J Phys Chem B 114(39):12666

    Article  CAS  Google Scholar 

  21. Ucisik MN, Dashti DS, Faver JC, Merz KM (2011) J Chem Phys 135:085101

    Article  Google Scholar 

  22. Baum B, Muley L, Smolinski M, Heine A, Hangauer D, Klebe G (2010) J Mol Biol 397(4):1042

    Article  CAS  Google Scholar 

  23. MacroModel. Version 9.9. New York, NY: Schrödinger, LLC; 2011

  24. Prime. Version 3.0. New York, NY: Schrödinger, LLC; 2011

  25. Jacobson MP, Friesner RA, Xiang ZX, Honig B (2002) J Mol Biol 320(3):597

    Article  CAS  Google Scholar 

  26. Jacobson MP, Pincus DL, Rapp CS, Day TJF, Honig B, Shaw DE, Friesner RA (2004) Proteins Struct Func Bioinf 55(2):351

    Article  CAS  Google Scholar 

  27. Klamt A, Schuurmann G (1993) J Chem Soc-Perkin Trans 2(5):799

    Article  Google Scholar 

  28. Srinivasan J, Cheatham TE, Cieplak P, Kollman PA, Case DA (1998) J Am Chem Soc 120(37):9401

    Article  CAS  Google Scholar 

  29. Massova I, Kollman PA (1999) J Am Chem Soc 121(36):8133

    Article  CAS  Google Scholar 

  30. Kollman PA, Massova I, Reyes C, Kuhn B, Huo SH, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE (2000) Account Chem Res 33(12):889

    Article  CAS  Google Scholar 

  31. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Proteins Struct Func Bioinfo 65(3):712

    Article  CAS  Google Scholar 

  32. Wang RX, Fang XL, Lu YP, Wang SM (2004) J Med Chem 47(12):2977

    Article  CAS  Google Scholar 

  33. LigPrep. Version 2.5. New York, NY: Schrödinger, LLC; 2011

  34. Katz BA, Elrod K, Verner E, Mackman RL, Luong C, Shrader WD, Sendzik M, Spencer JR, Sprengeler PA, Kolesnikov A, Tai VWF, Hui HC, Breitenbucher G, Allen D, Janc JW (2003) J Mol Biol 329(1):93

    Article  CAS  Google Scholar 

  35. Cui J, Marankan F, Fu WT, Crich D, Mesecar A, Johnson ME (2002) Bioorg Med Chem 10(1):41

    Article  CAS  Google Scholar 

  36. Whitlow M, Arnaiz DO, Buckman BO, Davey DD, Griedel B, Guilford WJ, Koovakkat SK, Liang A, Mohan R, Phillips GB, Seto M, Shaw KJ, Xu W, Zhao ZC, Light DR, Morrissey MM (1999) Acta Crystallogr Sect D-Biol Crystallogr 55:1395

    Article  CAS  Google Scholar 

  37. Toyota E, Ng KKS, Sekizaki H, Itoh K, Tanizawa K, James MNG (2001) J Mol Biol 305(3):471

    Article  CAS  Google Scholar 

  38. Fokkens J, Klebe G (2006) Angewandte Chem Int Ed 45(6):985

    Article  CAS  Google Scholar 

  39. Presnell SR, Patil GS, Mura C, Jude KM, Conley JM, Bertrand JA, Kam CM, Powers JC, Williams LD (1998) Biochemistry 37(48):17068

    Article  CAS  Google Scholar 

  40. Katz BA, Mackman R, Luong C, Radika K, Martelli A, Sprengeler PA, Wang J, Chan HD, Wong L (2000) Chem Biol 7(4):299

    Article  CAS  Google Scholar 

  41. Leiros HKS, Brandsdal BO, Andersen OA, Os V, Leiros I, Helland R, Otlewski J, Willassen NP, Smalas AO (2004) Protein Sci 13(4):1056

    Article  CAS  Google Scholar 

  42. Dullweber F, Stubbs MT, Musil D, Sturzebecher J, Klebe G (2001) J Mol Biol 313(3):593

    Article  CAS  Google Scholar 

  43. Maignan S, Guilloteau JP, Pouzieux S, Choi-Sledeski YM, Becker MR, Klein SI, Ewing WR, Pauls HW, Spada AP, Mikol V (2000) J Med Chem 43(17):3226

    Article  CAS  Google Scholar 

  44. Di Fenza A, Heine A, Koert U, Klebe G (2007) ChemMedChem 2(3):297

    Article  Google Scholar 

  45. Nar H, Bauer M, Schmid A, Stassen JM, Wienen W, Priepke HWM, Kauffmann IK, Ries UJ, Hauel NH (2001) Structure 9(1):29

    CAS  Google Scholar 

  46. Yusuf D, Davis AM, Kleywegt GJ, Schmitt S (2008) J Chem Inf Model 48(7):1411

    Article  CAS  Google Scholar 

  47. Baber JC, Thompson DC, Cross JB, Humblet C (2009) J Chem Inf Model 49(8):1889

    Article  CAS  Google Scholar 

  48. Weininger D (1988) J Chem Inf Comput Sci 28(1):31

    Article  CAS  Google Scholar 

  49. Weininger D, Weininger A, Weininger JL (1989) J Chem Inf Comput Sci 29(2):97

    Article  CAS  Google Scholar 

  50. Sadowski J, Gasteiger J, Klebe G (1994) J Chem Inf Comput Sci 34(4):1000

    Article  CAS  Google Scholar 

  51. Brandt T, Holzmann N, Muley L, Khayat M, Wegscheid-Gerlach C, Baum B, Heine A, Hangauer D, Klebe G (2011) J Mol Biol 405(5):1170

    Article  CAS  Google Scholar 

  52. Creighton TE (1984) Proteins: structure and molecular properties. Freeman and Company, New York, NY

    Google Scholar 

  53. Hubbard RE (2006) Structure-based drug discovery: an overview. Royal Society of Chemistry, Cambridge

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth M. Merz Jr..

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1991 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benson, M.L., Faver, J.C., Ucisik, M.N. et al. Prediction of trypsin/molecular fragment binding affinities by free energy decomposition and empirical scores. J Comput Aided Mol Des 26, 647–659 (2012). https://doi.org/10.1007/s10822-012-9567-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-012-9567-9

Keywords