Abstract
Metallo-β-lactamases (MβLs) are Zn(II)-based bacterial enzymes that hydrolyze β-lactam antibiotics, hampering their beneficial effects. In the most relevant subclass (B1), X-ray crystallography studies on the enzyme from Bacillus Cereus point to either two zinc ions in two metal sites (the so-called ‘3H’ and ‘DCH’ sites) or a single Zn(II) ion in the 3H site, where the ion is coordinated by Asp120, Cys221 and His263 residues. However, spectroscopic studies on the B1 enzyme from B. Cereus in the mono-zinc form suggested the presence of the Zn(II) ion also in the DCH site, where it is bound to an aspartate, a cysteine, a histidine and a water molecule. A structural model of this enzyme in its DCH mononuclear form, so far lacking, is therefore required for inhibitor design and mechanistic studies. By using force field based and mixed quantum–classical (QM/MM) molecular dynamics (MD) simulations of the protein in aqueous solution we constructed such structural model. The geometry and the H-bond network at the catalytic site of this model, in the free form and in complex with two common β-lactam drugs, is compared with experimental and theoretical findings of CphA and the recently solved crystal structure of new B2 MβL from Serratia fonticola (Sfh-I). These are MβLs from the B2 subclass, which features an experimentally well established mono-zinc form, in which the Zn(II) is located in the DCH site. From our simulations the εεδ and δεδ protomers emerge as possible DCH mono-zinc reactive species, giving a novel contribution to the discussion on the MβL reactivity and to the drug design process.







Similar content being viewed by others
Notes
A short MD calculation (400 ps) has been run removing the postion restraints on the water molecules after the equilibration, however Wat-H conserves its propensity to exchange its position with other water molecules from the bulk. Then the structure equilibrated with postion restraints was used in the subsequent QM/MM MD.
References
Crowder MW, Spencer J, Vila AJ (2006) Acc Chem Res 39:721–728
Toney JH, Moloughney JG (2004) Curr Opin Investig Drugs 5:823–826
Perez-Llarena FJ, Bou G (2009) Curr Med Chem 16:3740–3765
Simona F, Magistrato A, Dal Peraro M, Cavalli A, Vila AJ, Carloni P (2009) J Biol Chem 284:28164–28171
Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, Walsh TR (2009) Antimicrob Agents Chemother 53:5046–5054
Carfi A, Pares S, Duee E, Galleni M, Duez C, Frere JM, Dideberg O (1995) EMBO J 14:4914–4921
Orellano EG, Girardini JE, Cricco JA, Ceccarelli EA, Vila AJ (1998) Biochemistry 37:10173–10180
Fabiane SM, Sohi MK, Wan T, Payne DJ, Bateson JH, Mitchell T, Sutton BJ (1998) Biochemistry 37:12404–12411
Bebrone C (2007) Biochem Pharmacol 74:1686–1701
Bounaga S, Laws AP, Galleni M, Page MI (1998) Biochem J 331:703–711
Gonzalez JM, Buschiazzo A, Vila AJ (2010) Biochemistry 49:7930–7938
Llarrull LI, Tioni MF, Vila AJ (2008) J Am Chem Soc 130(47):15842–15851
Garau G, Lemaire D, Vernet T, Dideberg O, Di Guilmi AM (2005) J Biol Chem 280:28591–28600
Lisa M-N, Hemmingsen L, Vila AJ (2010) J Biol Chem 285:4570–4577
Moran-Barrio J, Gonzalez JM, Lisa MN, Costello AL, Peraro MD, Carloni P, Bennett B, Tierney DL, Limansky AS, Viale AM, Vila AJ (2007) J Biol Chem 282:18286–18293
Spencer J, Read J, Sessions RB, Howell S, Blackburn GM, Gamblin SJ (2005) J Am Chem Soc 127:14439–14444
Tioni MF, Llarrull LI, Poeylaut-Palena AA, Marti MA, Saggu M, Periyannan GR, Mata EG, Bennett B, Murgida DH, Vila AJ (2008) J Am Chem Soc 130:15852–15863
Gonzalez JM, Medrano Martin FJ, Costello AL, Tierney DL, Vila AJ (2007) J Mol Biol 373:1141–1156
Tomatis PE, Fabiane SM, Simona F, Carloni P, Sutton BJ, Vila AJ (2008) Proc Natl Acad Sci U S A 105:20605–20610
Rasia RM, Vila AJ (2004) J Biol Chem 279:26046–26051
Dal Peraro M, Llarrull LI, Rothlisberger U, Vila AJ, Carloni P (2004) J Am Chem Soc 126:12661–12668
Dal Peraro M, Vila AJ, Carloni P (2004) Proteins 54:412–423
Olsen L, Jost S, Adolph H-W, Pettersson I, Hemmingsen L, Jorgensen FS (2006) Bioorg Med Chem 14:2627–2635
Simona F, Magistrato A, Vera DMA, Garau G, Vila AJ, Carloni P (2007) Proteins 69:595–605
Wu S, Xu D, Guo H (2010) J Am Chem Soc 132:17986–17988
Dal Peraro M, Vila AJ, Carloni V (2010) In: Matta F (ed) Quantum biochemistry. New York, USA, pp 605–622
Xu D, Zhou Y, Xie D, Guo H (2005) J Med Chem 48:6679–6689
Dal Peraro M, Vila AJ, Carloni P (2002) J Biol Inorg Chem 7:704–712
Magistrato A, DeGrado WF, Laio A, Rothlisberger U, VandeVondele J, Klein ML (2003) J Phys Chem B 107:4182–4188
Hong R, Magistrato A, Carloni P (2008) J Chem Theory Comput 4:1745–1756
Becke AD (1988) Phys Rev A 38:3098–3100
Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789
Becke AD (1993) J Chem Phys 98:5648–5652
Wang J, Cieplak P, Kollman P (2000) J Comp Chem 21:1049–1074
Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) J Comput Chem 25:1157–1174
Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein LM (1983) J Chem Phys 79:926–935
Bayly CI, Cieplak P, Cornell WD, Kollman PA (1993) J Phys Chem 97:10269–10280
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Laham A, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, Revision C.02
Diaz N, Suarez D, Merz KM (2001) J Am Chem Soc 123:9867–9879
Suarez D, Diaz N, Merz KM (2002) J Comput Chem 23(16):1587–1600
Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Roberts BP, Wang B, Hayik S, Roitberg A, Seabra G, Kolossváry I, Wong KF, Paesani F, Vanicek J, Liu J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Cai Q, Ye X, Wang J, Hsieh M-J, Cui G, Roe DR, Mathews DH, Seetin MG, Sagui C, Babin V, Luchko T, Gusarov S, Kovalenko A, Kollman PA (2010) AMBER 11. University of California, San Francisco
Ryckaert JP, Ciccotti G, Berendsen HJC (1977) J Comp Phys 23:327–341
Garau G, Bebrone C, Anne C, Galleni M, Frere J-M, Dideberg O (2005) J Mol Biol 345:785–795
Suarez D, Merz KM (2001) J Am Chem Soc 123:3759–3770
Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Pearlman DA, Crowley M, Walker RC, Zhang W, Wang B, Hayik S, Roitberg A, Seabra G, Wong KF, Paesani F, Wu X, Brozell S, Tsui V, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Beroza P, Mathews DH, Schafmeister C, Ross WS, Kollman PA (2006) AMBER 9, University of California. University of California, San Francisco, San Francisco
VandeVondele J, Krack M, Mohamed F, Parrinello M, Chassain T, Hutter J (2005) Comput Phys Commun 167:103–128
Laino T, Mohamed F, Laio A, Parrinello M (2005) J Chem Theory Comput 1:1176–1184
Laino T, Mohamed F, Laio A, Parrinello M (2006) J Chem Theory Comput 2:1370–1378
Goedecker S, Teter M, Hutter J (1996) Phys Rev B 54:1703–1710
Hartwigsen C, Goedecker S, Hutter J (1998) Phys Rev B 58:3641–3662
Hoover WG (1985) Phys Rev A 31:1695–1697
Shao J, Tanner SW, Thompson N, Cheatham TE (2007) J Chem Theory Comput 3:2312–2334
Xu D, Xie D, Guo H (2006) J Biol Chem 281:8740–8747
Fonseca F, Bromley EHC, Saavedra MJ, Correia A, Spencer J (2011) J Mol Biol 411:951–959
Spiegel K, Magistrato A (2006) Org Biomol Chem 4:2507–2517
Sgrignani J, Magistrato A (2012) J Phys Chem B 116:2259–2268
Llarrull LI, Fabiane SM, Kowalski JM, Bennett B, Sutton BJ, Vila AJ (2007) J Biol Chem 282:18276–18285
Tomatis PE, Rasia RM, Segovia L, Vila AJ (2005) Proc Natl Acad Sci USA 102:13761–13766
Acknowledgments
This work has been supported in part by the FIRB project Contract RBLA032ZM7, by the EC contract SPINE II n° 031220 and by grants from HHMI (Howard Hughes Medical Instituteand ANPCyT (Agencia Nacional de Promoción Científica y Tecnológica) to AJV. AJV is a fellow of the John Simon Guggenheim Foundation and an HHMI International Research Scholar. Access to the computational resources supplied by CASPUR and by CINECA is gratefully acknowledged.
Author information
Authors and Affiliations
Corresponding authors
Additional information
Paolo Carloni: Joint venture of RWTH Aachen University and Forschungszentrum Jülich, Germany.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Sgrignani, J., Magistrato, A., Dal Peraro, M. et al. On the active site of mononuclear B1 metallo β-lactamases: a computational study. J Comput Aided Mol Des 26, 425–435 (2012). https://doi.org/10.1007/s10822-012-9571-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10822-012-9571-0