Abstract
We have carried out statistical analyses and computer simulations of helical kinks for TM helices in the PDBTM database. About 59 % of 1562 TM helices showed a significant kink, and 38 % of these kinks are associated with prolines in a range of ±4 residues. Our analyses show that helical kinks are more populated in the central region of helices, particularly in the range of 1–3 residues away from the helix center. Among 1,053 helical kinks analyzed, 88 % of kinks are bends (change in helix axis without loss of helical character) and 12 % are disruptions (change in helix axis and loss of helical character). It is found that proline residues tend to cause larger kink angles in helical bends, while this effect is not observed in helical disruptions. A further analysis of these kinked helices suggests that a kinked helix usually has 1–2 broken backbone hydrogen bonds with the corresponding N–O distance in the range of 4.2–8.7 Å, whose distribution is sharply peaked at 4.9 Å followed by an exponential decay with increasing distance. Our main aims of this study are to understand the formation of helical kinks and to predict their structural features. Therefore we further performed molecular dynamics (MD) simulations under four simulation scenarios to investigate kink formation in 37 kinked TM helices and 5 unkinked TM helices. The representative models of these kinked helices are predicted by a clustering algorithm, SPICKER, from numerous decoy structures possessing the above generic features of kinked helices. Our results show an accuracy of 95 % in predicting the kink position of kinked TM helices and an error less than 10° in the angle prediction of 71.4 % kinked helices. For unkinked helices, based on various structure similarity tests, our predicted models are highly consistent with their crystal structure. These results provide strong supports for the validity of our method in predicting the structure of TM helices.











Similar content being viewed by others
References
White SH, Wimley WC (1999) Membrane protein folding and stability: physical principles. Annu Rev Bioph Biomol Struct 28:319–365
Drews J (2000) Drug discovery: a historical perspective. Science 287(5460):1960–1964
Filmore D (2004) It’s a GPCR world. Mod Drug Discov 7:24–26
Bowie JU (2005) Solving the membrane protein folding problem. Nature 438(7068):581–589. doi:10.1038/nature04395
Milik M, Skolnick J (1992) Spontaneous insertion of polypeptide-chains into membranes - a Monte-Carlo model. Proc Natl Acad Sci USA 89(20):9391–9395
Chen CM (2001) Lattice model of transmembrane polypeptide folding. Phys Rev E 63(1):010901
Floriano WB, Vaidehi N, Goddard WA, Singer MS, Shepherd GM (2000) Molecular mechanisms underlying differential odor responses of a mouse olfactory receptor. Proc Natl Acad Sci USA 97(20):10712–10716
Dobbs H, Orlandini E, Bonaccini R, Seno F (2002) Optimal potentials for predicting inter-helical packing in transmembrane proteins. Proteins 49(3):342–349. doi:10.1002/prot.10229
Chen CM, Chen CC (2003) Computer Simulations of membrane protein folding: structure and dynamics. Biophys J 84(3):1902–1908
Kokubo H, Okamoto Y (2004) Self-assembly of transmembrane helices of bacteriorhodopsin by a replica-exchange Monte Carlo simulation. Chem Phys Lett 392(1–3):168–175. doi:10.1016/j.cplett.2004.04.112
Chen CC, Chen CM (2009) A dual-scale approach toward structure prediction of retinal proteins. J Struct Biol 165(1):37–46. doi:10.1016/j.jsb.2008.10.001
Chen CC, Wei CC, Sun YC, Chen CM (2008) Packing of transmembrane helices in bacteriorhodopsin folding: structure and thermodynamics. J Struct Biol 162(2):237–247. doi:10.1016/j.jsb.2008.01.003
Richardson JS, Richardson DC (1988) Amino acid preferences for specific locations at the ends of alpha helices. Science 240(4859):1648–1652
Orzaez M, Salgado J, Gimenez-Giner A, Perez-Paya E, Mingarro I (2004) Influence of proline residues in transmembrane helix packing. J Mol Biol 335(2):631–640
Slepkov ER, Chow S, Lemieux MJ, Fliegel L (2004) Proline residues in transmembrane segment IV are critical for activity, expression and targeting of the Na+/H+ exchanger isoform 1. Biochem J 379(Pt 1):31–38. doi:10.1042/BJ20030884
Bright JN, Shrivastava IH, Cordes FS, Sansom MS (2002) Conformational dynamics of helix S6 from Shaker potassium channel: simulation studies. Biopolymers 64(6):303–313. doi:10.1002/bip.10197
Chakrabartty A, Baldwin RL (1995) Stability of alpha-helices. Adv Protein Chem 46:141–176
Costantini S, Colonna G, Facchiano AM (2006) Amino acid propensities for secondary structures are influenced by the protein structural class. Biochem Biophys Res Commun 342(2):441–451. doi:10.1016/j.bbrc.2006.01.159
Riek RP, Rigoutsos I, Novotny J, Graham RM (2001) Non-alpha-helical elements modulate polytopic membrane protein architecture. J Mol Biol 306(2):349–362. doi:10.1006/jmbi.2000.4402
Hall SE, Roberts K, Vaidehi N (2009) Position of helical kinks in membrane protein crystal structures and the accuracy of computational prediction. J Mol Graph Model 27(8):944–950. doi:10.1016/j.jmgm.2009.02.004
Yohannan S, Faham S, Yang D, Whitelegge JP, Bowie JU (2004) The evolution of transmembrane helix kinks and the structural diversity of G protein-coupled receptors. Proc Natl Acad Sci USA 101(4):959–963. doi:10.1073/pnas.0306077101
Cao Z, Bowie JU (2012) Shifting hydrogen bonds may produce flexible transmembrane helices. Proc Natl Acad Sci USA 109(21):8121–8126. doi:10.1073/pnas.1201298109
Langelaan DN, Wieczorek M, Blouin C, Rainey JK (2010) Improved helix and kink characterization in membrane proteins allows evaluation of kink sequence predictors. J Chem Inf Model 50(12):2213–2220. doi:10.1021/ci100324n
Meruelo AD, Samish I, Bowie JU (2011) TMKink: a method to predict transmembrane helix kinks. Protein Sci 20(7):1256–1264. doi:10.1002/pro.653
Kneissl B, Mueller SC, Tautermann CS, Hildebrandt A (2011) String kernels and high-quality data set for improved prediction of kinked helices in alpha-helical membrane proteins. J Chem Inf Model 51(11):3017–3025. doi:10.1021/ci200278w
Wu HH, Chen CC, Chen CM (2012) Replica exchange Monte-Carlo simulations of helix bundle membrane proteins: rotational parameters of helices. J Comput Aided Mol Des 26(3):363–374. doi:10.1007/s10822-012-9562-1
Wang G, Dunbrack RL Jr (2003) PISCES: a protein sequence culling server. Bioinformatics 19(12):1589–1591
Mohapatra PK, Khamari A, Raval MK (2004) A method for structural analysis of alpha-helices of membrane proteins. J Mol Model 10(5–6):393–398. doi:10.1007/s00894-004-0212-y
Lovell SC, Davis IW, Arendall WB 3rd, de Bakker PI, Word JM, Prisant MG, Richardson JS, Richardson DC (2003) Structure validation by Calpha geometry: phi, psi and Cbeta deviation. Proteins 50(3):437–450. doi:10.1002/prot.10286
Zhou F, Schulten K (1995) Molecular dynamics study of a membrane-water interface. J Phys Chem 99(7):2194–2207
Tsong TY (1990) Electrical modulation of membrane proteins: enforced conformational oscillations and biological energy and signal transductions. Annu Rev Biophys Biophys Chem 19:83–106. doi:10.1146/annurev.bb.19.060190.000503
Hunenberger P (2005) Thermostat algorithms for molecular dynamics simulations. Adv Polym Sci 173:105–147. doi:10.1007/B99427
Zhang Y, Skolnick J (2004) SPICKER: a clustering approach to identify near-native protein folds. J Comput Chem 25(6):865–871
Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181(96):223–230
Shortle D, Simons KT, Baker D (1998) Clustering of low-energy conformations near the native structures of small proteins. Proc Natl Acad Sci USA 95(19):11158–11162
Yau WM, Wimley WC, Gawrisch K, White SH (1998) The preference of tryptophan for membrane interfaces. Biochemistry 37(42):14713–14718. doi:10.1021/bi980809c
Javadpour MM, Eilers M, Groesbeek M, Smith SO (1999) Helix packing in polytopic membrane proteins: role of glycine in transmembrane helix association. Biophys J 77(3):1609–1618. doi:10.1016/S0006-3495(99)77009-8
Miyano M, Ago H, Saino H, Hori T, Ida K (2010) Internally bridging water molecule in transmembrane alpha-helical kink. Curr Opin Struct Biol 20(4):456–463. doi:10.1016/j.sbi.2010.05.008
Wallin E, Tsukihara T, Yoshikawa S, von Heijne G, Elofsson A (1997) Architecture of helix bundle membrane proteins: an analysis of cytochrome c oxidase from bovine mitochondria. Protein Sci 6(4):808–815. doi:10.1002/pro.5560060407
Chang YF, Chen CM (2011) Classification and visualization of the social science network by the minimum span clustering method. J Am Soc Inform Sci Technol 62(12):2404–2413. doi:10.1002/Asi.21634
Zhang Y, Skolnick J (2005) TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res 33(7):2302–2309. doi:10.1093/nar/gki524
Siew N, Elofsson A, Rychlewski L, Fischer D (2000) MaxSub: an automated measure for the assessment of protein structure prediction quality. Bioinformatics 16(9):776–785
Zemla A (2003) LGA: a method for finding 3D similarities in protein structures. Nucleic Acids Res 31(13):3370–3374
Popot JL, Engelman DM (1990) Membrane protein folding and oligomerization: the two-stage model. Biochemistry 29(17):4031–4037
Kahn TW, Engelman DM (1992) Bacteriorhodopsin can be refolded from two independently stable transmembrane helices and the complementary five-helix fragment. Biochemistry 31(26):6144–6151
Peled-Zehavi H, Arkin IT, Engelman DM, Shai Y (1996) Co assembly of synthetic segments of shaker K+ channel within phospholipid membranes. Biochemistry 35(21):6828–6838. doi:10.1021/bi952988t
Acknowledgments
This work is supported by the National Science Council of Taiwan under grant of no. NSC 99-2112-M-003 -011 -MY3.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Huang, YH., Chen, CM. Statistical analyses and computational prediction of helical kinks in membrane proteins. J Comput Aided Mol Des 26, 1171–1185 (2012). https://doi.org/10.1007/s10822-012-9607-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10822-012-9607-5