Skip to main content

Advertisement

Log in

A novel view of modelling interactions between synthetic and biological polymers via docking

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Multipoint interactions between synthetic and natural polymers provide a promising platform for many topical applications, including therapeutic blockage of virus-specific targets. Docking may become a useful tool for modelling of such interactions. However, the rigid docking cannot be correctly applied to synthetic polymers with flexible chains. The application of flexible docking to these polymers as whole macromolecule ligands is also limited by too many possible conformations. We propose to solve this problem via stepwise flexible docking. Step 1 is docking of separate polymer components: (1) backbone units (BU), multi-repeated along the chain, and (2) side groups (SG) consisting of functionally active elements (SG F ) and bridges (SG B ) linking SG F with BU. At this step, probable binding sites locations and binding energies for the components are scored. Step 2 is docking of component-integrating models: [BU] m , SG = SG F –SG B , BU–SG, BU–BU(SG)–BU, BU(SG)[BU] m –BU(SG), and [BU var (SG var )] m . Every modelling level yields new information, including how the linkage of various components influences on the ligand—target contacts positioning, orientation, and binding energy in step-by-step approximation to polymeric ligand motifs. Step 3 extrapolates the docking results to real-scale macromolecules. This approach has been demonstrated by studying the interactions between hetero-SG modified anionic polymers and the N-heptad repeat region tri-helix core of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp41, the key mediator of HIV-1 fusion during virus entry. The docking results are compared to real polymeric compounds, acting as HIV-1 entry inhibitors in vitro. This study clarifies the optimal macromolecular design for the viral fusion inhibition and drug resistance prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. The quantity of possible structural conformations for a small molecule reaches 102–3 [10, 11], and this value increases to ≥10(2–3)N in polymeric chains, where N is the number of small molecular monomer residues in the N-mer chain (the degree of polymerisation).

  2. Biopolymers are nano-scale targets, as a rule.

  3. While an antibody is a protein-sized molecule, only small parts of it bind to an antigen directly.

  4. A. G. Bukrinskaya et al. (Ivanovsky Institute of Virology, Moscow, Russia) I. V. Timofeyev et al. (Centre of Virology and Biotechnology “Vector”, Koltsovo, Novosibirsk Region, Russia), E. De Clercq et al. (Rega Institute, Leuven, Belgium), and L. Margolis et al. (National Institute of Child Health and Human Development, NIH, Bethesda, USA) among others.

  5. This assumption has been verified by a test-docking of the Ia derived models (see below) to the both NHR and CHR. The NHR possessed significantly more (than CHR) multiplicity and higher binding energy (1.5–2 fold stronger).

  6. The Dock6 results accept the H-bond formation (within the 3 atoms XD, HD, and XA) if the following two conditions are met: (1) the distance between HD and XA is less than or equal to 2.5 Å; (2) the angle defined by XD, HD, and XA is between 120° and 180°. Several score functions are able to recognize the possibility of H-bonding directly, for example, the G-Score and ChemScore algorithms include direct calculations for the H-bonds contribution in ligand-target binding energy.

  7. Including a solvation effect score.

  8. Different by chemical nature and of location in the macromolecule.

  9. In this study we experimentally modelled the chains up to pentamers by alternating the five furan-like and succinic acid derived units.

  10. Other types of anchors will be reported in future publications.

  11. This correlation degree depends on scoring algorithms of the docking results to a certain extent, and one of the top correlations was obtained with ChemScore function. It can be related to a more adequate scoring of the contributions [70] from not only H-bond forces, and rotation entropy but also from the lipophilic effect, which is typical for hydrophobic Ali -structures of the considered anchors.

  12. With the exception of samples 2 and 3, containing the inefficient anchors CP and CH.

References

  1. Huang SY, Zou X (2010) Advances and challenges in protein-ligand docking. Int J Mol Sci 11:3016–3034

    Article  CAS  Google Scholar 

  2. Mohan V, Gibbs AC, Cummings MD, Jaeger EP, DesJarlais RL (2005) Docking: successes and challenges. Curr Pharm Des 11:323–333

    Article  CAS  Google Scholar 

  3. Taylor RD, Jewsbury PJ, Essex JW (2002) A review of protein-small molecule docking methods. J Comput-Aided Mol Design 16:151–166

    Article  CAS  Google Scholar 

  4. Index Nominum: International Drug Directory 20th Edition, MedPharm 2011, 2889 Pages, ISBN: 978-3-8047-5053-1

  5. Maeda H (2012) Recollections of 45 years in research: from protein chemistry to polymeric drugs to the EPR effect in cancer therapy. ISBN: 978-1-61761-101-8

  6. Kelly CG, Shattock RJ (2011) Specific microbicides in the prevention of HIV infection. J Int Med 270:509–519

    Article  CAS  Google Scholar 

  7. Serbin AV, Karaseva EN, Tsvetkov VB, Alikhanova OL, Rodionov IL (2010) Hybrid Polymeric Systems for Nano-Selective Counter Intervention in Virus Life Cycle. Macromol Symp 296(1):466–477. http://onlinelibrary.wiley.com/doi/10.1002/masy.201051063/abstract

  8. Rosenfeld R, Vajda S, DeLisi C (1995) Flexible docking and design. Annu Rev Biophys Biomol Struct 24:677–700

    Article  CAS  Google Scholar 

  9. Dias R, de Azevedo Filgueira, Jr W (2008) Molecular docking algorithms. Curr Drug Targets 9:1040–1047

    Article  CAS  Google Scholar 

  10. Nikolaienko TIu, Bulavin LA, Govorun DM (2011) The 5′-deoxyadenylic acid molecule conformational capacity: quantum-mechanical investigation using density functional theory (DFT). Ukr Biokhim Zh 83(4):16–28

    Google Scholar 

  11. Ponomar’ova AH, Iurenko IP, Zhurakivs’kyi RO, Hovorun DM (2011) Conformational capacity of 2′,3′-didehydro-2′,3′-dideoxyadenosine as a key to understanding its biological activity: results of quantum chemical modeling. Ukr Biokhim Zh 83(2):74–84

    Google Scholar 

  12. Bukrinskaya AG, Serbin AV, Bogdan OP, Stotskaya LL, Alimova IV et al (1993) Adamantane analogues block early steps of HIV infection. Antivir Res 20(1):63

    Google Scholar 

  13. Burstein ME, Serbin AV, Khakhulina TV, Alymova IV, Stotskaya LL et al (1999) Inhibition of HIV-1 replication by newly developed adamantane-containing polyanionic agents. Antivir Res 41(3):135–144

    Article  CAS  Google Scholar 

  14. Serbin AV, Kasyan LI, Bourcteine ME, Boukrinskaya AG (1999) Norbornene containing antivirals: synthesis and evaluation of new polyanionic derivatives. Antivir Res 41(2):46

    Google Scholar 

  15. Timofeyev DI, Perminova NG, Kiseleva YaYu, Nekludov VV, Vatolin GYu, et al. (2003) HIV-inhibiting activity of polyanionic matrixes and based on them substances containing adamantane and norbornane pharmacophores. Antibiot Chemother (Russia) 48(5):7–15. http://www.ncbi.nlm.nih.gov/pubmed/12968467?ordinalpos=14&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum

  16. Perminova NG, Serbin AV, Timofeev DI, Pliasunova OA, Karpyshev NN, et al. (2003) Experimental assesment of anti-HIV efficiency of complex membrannotropic substances including peptide pseudoligands. Biotechnology in Russia 5: 25–35. http://elibrary.ru/item.asp?id=8372899

    Google Scholar 

  17. Boukrinskaia AG, Serbin AV, Bogdan OP, Stotskaya LL, Alymova IV et al. (1996) Polymeric adamantane analogues. US Pat 5880154

  18. Bukrinskaya AG, Burshtain ME, Alikhanova OL, Ermakov IV, Kasyan LI et al. (2006) Polyanionic derivatives of norbornane, method of synthesis and based on them inhibitors of human immunodeficiency virus reproduction. Rus Pat 2281297

  19. Vorkunova GK, Kalinina LB, Burshtein ME, Serbin AV, Rodionov IL et al (2009) Effects of novel antiviral agents on HIV-1 replication. Vopr Virusol 54(2):27–31

    CAS  Google Scholar 

  20. Killian MS, Levy JA (2011) HIV/AIDS: 30 years of progress and future challenges. Eur J Immunol 41(12):3401–3411

    Article  CAS  Google Scholar 

  21. Colman PM (2009) New antivirals and drug resistance. Annu Rev Biochem 78:95–118

    Article  CAS  Google Scholar 

  22. HIV drug resistance, WHO information (2011) http://www.who.int/hiv/topics/drugresistance/en/index.html

  23. Johnson VA, Calvez V, Gunthard HF, Paredes R, Pillay D et al (2011) Update of the drug resistance mutations in HIV-1. Top Antivir Med (IAS-USA) 19(4):156–164

    Google Scholar 

  24. Tsvetkov V, Veselovski A, Serbin A (2011) Polymer-Coupled Systems for Blocking the Viral Fusion 1. Modeling in silico the in vitro HIV-1 Entry Inhibitors. Antivir Res 90(2):A46. http://www.sciencedirect.com/science/article/pii/S0166354211001276

  25. Serbin A, Karaseva E, Alikhanova O, Tsvetkov V (2011) Polymer-cooperative approach to multi-blocking the viruses. Antivir Res 90(2):A76. http://www.sciencedirect.com/science/article/pii/S0166354211002166, http://discover-decouvrir.cisti-icist.nrc-cnrc.gc.ca/fra/articles/?id=17926321

  26. Serbin AV (2005) Design of bio-selective polymeric systems possessing the combined antiviral activity. D. Sci. Dissertation. http://www.lib.ua-ru.net/diss/cont/147035.html

  27. Lu M, Ji H, Shen S (1999) Subdomain folding and biological activity of the core structure from human immunodeficiency virus type 1 gp41: implications for viral membrane fusion. J Virol 73(5):4433–4438

    CAS  Google Scholar 

  28. Lu M, Stoller MO, Wang S, Liu J, Fagan MB et al (2001) Structural and functional analysis of interhelical interactions in the human immunodeficiency virus type 1 gp41 envelope glycoprotein by alanine-scanning mutagenesis. J Virol 75(22):11146–11156

    Article  CAS  Google Scholar 

  29. Tan K, Liu JH, Wang JH, Shen S, Lu M (1997) Atomic structure of a thermostable subdomain of HIV-1 gp41. Proc Natl Acad Sci USA 94(11):12303–12308

    Article  CAS  Google Scholar 

  30. Koshiba T, Chan DC (2003) The prefusogenic intermediate of HIV-1 gp41 contains exposed C-peptide regions. J Biol Chem 278(9):7573–7579

    Article  CAS  Google Scholar 

  31. Eckhardt M (2010) Quantitative analysis of the early steps of virus host cell interaction of human immunodeficiency virus type 1 and hepatitis C virus. Dis. D Nat Sci. Heidelberg, Germany: Ruperto-Carola Univ. 143 p.; http://archiv.ub.uni-heidelberg.de/volltextserver/volltexte/2010/10683/pdf/Dissertation_Manon_Eckhardt_Duplex.pdf

  32. Hertje M, Zhou M, Dietrich U (2010) Inhibition of HIV-1 entry: multiple keys to close the door. ChemMedChem 5:1825–1835

    Article  CAS  Google Scholar 

  33. Cai L, Jiang S (2010) Development of peptide and small-molecule HIV-1 fusion inhibitors that target gp41. ChemMedChem 5(11):1813–1824

    Article  CAS  Google Scholar 

  34. Serbin A, Karaseva E, Chernikova E, Dunaeva I, Krutko E, et al. (2010) Graft and RAFT Reactive Macro Reagents: 3. Bis-[copoly-(divinyl ether-alt-maleic anhydride)]-trithiocarbonate. Macromol Symp 296(1):80–91. http://onlinelibrary.wiley.com/doi/10.1002/masy.201051013/abstract

  35. Serbin AV, Karaseva EN, Dunaeva IV, Krut’ko EB, Talyzenkov YA, et al. (2011) Controlled free-radical copolymerization of maleic anhydride and divinyl ether in the presence of reversible addition-fragmentation chain-transfer agents. Polym Sci - Series B 53(3-4):116–124. http://link.springer.com/article/10.1134%2FS1560090411030079

  36. Cowie JMG (1985) Radical initiated alternating copolymerization. In: Cowie JMG (ed) Alternating copolymers. Plenum Press, NY, Ch 2, pp 19–74

    Google Scholar 

  37. Freeman WJ (1982) 13C NMR studies of the structure of divinyl ether-maleic anhydride cyclic alternating copolymer: a biologically active agent. In: Carraher C (ed) Biological activities of polymers—ACS Symp Series—American Chem Soc, Washington 243–253

  38. Kunitake T, Tsukino M (1979) Radical cyclopolymerization of divinyl ether and maleic anhydride. A 13C-NMR study of the polymer structure. J Polym Sci Chem Ed 17(3):877–888

    Article  CAS  Google Scholar 

  39. Samuels RJ (1977) A quantative evaluation of the structure and properties of the methyl ester of divinyl ether–maleic anhydride 1:2 copolymer. Polymer 18(5):452–460

    Article  CAS  Google Scholar 

  40. Gorshkova MY, Lebedeva TL, Stotskaya LL, Slonim IY (1996) The structure of divinyl ether-maleic anhydride copolymer by spectroscopic methods. Polym. Sci. Ser. A, 38(10):1094-1096. http://cat.inist.fr/?aModele=afficheN&cpsidt=3266627, http://www.sciencedirect.com/science/article/pii/S0166354209001879

    Google Scholar 

  41. Tripos Inc.: 1699 South Hanley Rd., St. Louis, MO 63144-2917, 2007

  42. http://spdbv.vital-it.ch/

  43. Powell DJM (1977) Math program 12: 241–254; Powell MJD (1964) An efficient method for finding the minimum of a function of several variables without calculating derivatives. Computer J 7:155–162

    Article  Google Scholar 

  44. Clark M, Cramer RD III, Van Opdenbosch N (1989) J Comp Chem 10:982–1012

    Article  CAS  Google Scholar 

  45. Stewart JJP (2007) Semiempirical molecular orbital methods. In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry. Wiley, NJ, USA. doi:10.1002/9780470125786.ch2

    Google Scholar 

  46. Stewart JJP (1998) “PM3”. In: Schleyer PVR, Allinger NL, Clark T, Gasteiger J, Kollman PA et al (eds) Encyclopedia Computat Chem, vol V 3. Wiley, Chichester, pp 2080–2086

    Google Scholar 

  47. MOPAC®; http://openmopac.net/

  48. VEGA ZZ; http://www.vegazz.net/

  49. Gasteiger J, Marsili M (1978) A new model for calculating atomic charges in molecules. Tetrahedron Lett 19(34):3181–3184

    Article  Google Scholar 

  50. http://dock.compbio.ucsf.edu/

  51. Connolly M (1983) Solvent-accessible surfaces of proteins and nucleic acids. Science 221(4612):709–713

    Article  CAS  Google Scholar 

  52. http://www.cgl.ucsf.edu/Overview/software.html#dms

  53. http://dock.compbio.ucsf.edu/DOCK_6/dock6_manual.htm

  54. Hawkins GD, Cramer CJ, Truhlar DG (1995) Pairwise solute descreening of solute charges from a dielectric medium. Chem Phys Lett 246:122–129

    Article  CAS  Google Scholar 

  55. Jiang S, Lu H, Liu S, Zhao Q, He Y et al (2004) N-Substituted pyrrole derivatives as novel human immunodeficiency virus type 1 entry inhibitors that interfere with the gp41 Six-Helix bundle formation and block virus fusion. Antimicrob Ag Chemother 48(11):4349–4359

    Article  CAS  Google Scholar 

  56. Liu K, Lu H, Hou L, Qi Z, Teixeira C et al (2008) Design, synthesis, and biological evaluation of N-carboxyphenylpyrrole derivatives as potent HIV fusion inhibitors targeting gp41. J Med Chem 51(24):7843–7854

    Article  CAS  Google Scholar 

  57. Zhou G, Wu D, Snyder B, Ptak RG, Kaur H et al (2011) Development of indole compounds as small molecule fusion inhibitors targeting HIV-1 glycoprotein-41. J Med Chem 54(20):7220–7231

    Article  CAS  Google Scholar 

  58. Welch BD, Francis JN, Redman JS, Paul S, Weinstock MT et al (2010) Design of a Potent D-peptide HIV-1 entry inhibitor with a strong barrier to resistance. J Virol 84(21):11235–11244

    Article  CAS  Google Scholar 

  59. Sabin C, Corti D, Buzon V, Seaman MS, Hulsik DL et al. (2010) Crystal structure and size-dependent neutralization properties of HK20, a human monoclonal antibody binding to the highly conserved heptad repeat 1 of gp41. PLoS Pathogens 6(11): e1001195. http://www.plospathogens.org/article/info%3Adoi%2F10.1371%2Fjournal.ppat.1001195

  60. Chan DC, Fass D, Berger JM, Kim PS (1997) Core structure of gp41 from the HIV envelope glycoprotein. Cell 89(2):263–273

    Article  CAS  Google Scholar 

  61. Follis KE, Larson SJ, Lu M, Nunberg JH (2002) Genetic evidence that interhelical packing interactions in the gp41 core are critical for transition of the human immunodeficiency virus type 1 envelope glycoprotein to the fusion-active state. J Virol 76(14):7356–7362

    Article  CAS  Google Scholar 

  62. Markosyan RM, Ma X, Lu M, Nunberg JH (2002) The mechanism of inhibition of HIV-1 Env-mediated cell–cell fusion by recombinant cores of gp41 ectodomain. Virology 302(1):174–184

    Article  CAS  Google Scholar 

  63. Qadir MI, Malik SA (2010) Genetic variation in the HR region of the env gene of HIV: a perspective for resistance to HIV fusion inhibitors. AIDS Res Hum Retrovir 26(11):1–7

    Google Scholar 

  64. Ramirez CGG (2007) Desino, sintesis y estructura de dominios helicoidales influencia la introduccion de aminoacidos D. Tesis Doctoral–Universitat de Barcelona, 60 p http://digital.csic.es/bitstream/10261/23028/6/Granados_Carmen_6.pdf

  65. Gaston F (2008) Développement d’inhibiteurs d’entrée du virus VIH-1//These Présentée pour obtenir le titre de Docteur de L’Universite de Provence Aix-Marseillei. 250 p.; http://tel.archives-ouvertes.fr/docs/00/41/76/74/PDF/These.pdf

  66. Muegge IA, Martin YC (1999) General and fast scoring function for protein-ligand interactions: a simplified potential approach. J Med Chem 42(5):791–804

    Article  CAS  Google Scholar 

  67. IaIu Kiseleva, Perminova NG, liasunova OA, Timofeev DI, Serbin AV et al (2005) Antiviral action of membranotropic compounds modified by adamantane and norbornene pharmacophores exerted on different HIV-1 strains. Mol Gen Mikrobiol Virusol 2:33–36

    Google Scholar 

  68. Serbin A, Karaseva E, Egorov Y, Dunaeva I, Pavlova M et al (2009) A macromolecular basis for microbicides dual protecting against HIV and cytomegalovirus infection. Antivir Res 82(2):A66

    Article  Google Scholar 

  69. Serbin AV, Veselovskii AV, Tsvetkov VB (2012) In vitro and in silico investigation of interferonogenic analogues of nucleic acids, artificially programmed to block the initial stages of HIV infection of cells. Appl Biochem Microbiol 48(9):723–739. http://link.springer.com/article/10.1134%2FS0003683812090049

    Google Scholar 

  70. Eldridge MD, Murray CW, Auton TR, Paolini GV, Mee RP (1997) Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. J Comp Aided Mol Des 11(5):425–445

    Article  CAS  Google Scholar 

  71. Kolocouris N, Foscolos GB, Kolocouris A, Marakos P, Pouli N et al (1994) Synthesis and antiviral activity evaluation of some aminoadamantane derivatives. J Med Chem 37:2896–2902

    Article  CAS  Google Scholar 

  72. Kolocouris N, Kolocouris A, Foscolos GB, Fytas G, Neyta J et al (1996) Synthesis and antiviral activity evaluation of some aminoadamantane derivatives. 2. J Med Chem 39:3307–3318

    Article  CAS  Google Scholar 

  73. Frey G, Rits-Volloch S, Zhang XQ, Schooley RT, Chen B et al (2006) Small molecules that bind the inner core of gp41 and inhibit HIV envelope-mediated fusion. Proc Natl Acad Sci USA 103(38):13938–13943

    Article  CAS  Google Scholar 

  74. Palfreyman MT, Jorgensen EM (2009) In vivo analysis of membrane fusion. In: Encyclopedia Life Sci, Wiley, Chihester, pp 1–14

  75. Kozeletskaia KN, Stotskaia LL, Serbin AV, Munshi K, Sominina AA, Kiselev OI (2003) Structure and antiviral activity of adamantane-containing polymer preparation. Vopr Virusol (Russia) 48(5):19-26; PMID: 14598476. http://www.ncbi.nlm.nih.gov/pubmed/14598476

  76. Lobritz MA, Ratcliff AN, Arts EJ (2010) HIV-1 entry, inhibitors, and resistance. Viruses 2:1069–1105

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful for the following collaborations: in copolymer synthesis, to Ekaterina Karaseva, et al. (Inst. Petrochem. Synthesis, Moscow); in anti-HIV-1 evaluations, to Marina Bourshtein, Alisa Bukrinskaya, et al. (Virology Inst., Moscow), Igor Timofeyev, Natalia Perminova, et al. (SRC “Vector”, Koltsovo), Erik De Clercq, et al. (Rega Inst. Med. Res., Belgium); in support of the computational modelling, to Alexander Veselovsky, et al. (Inst. Biomed. Chem., Moscow); in provision of equipment and materials, to Olga Alikhanova; and in reviewing this paper and helpful discussion, to Lilia Alkhanova.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander V. Serbin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsvetkov, V.B., Serbin, A.V. A novel view of modelling interactions between synthetic and biological polymers via docking. J Comput Aided Mol Des 26, 1369–1388 (2012). https://doi.org/10.1007/s10822-012-9621-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-012-9621-7

Keywords