Skip to main content

Advertisement

Log in

Computational identification of epitopes in the glycoproteins of novel bunyavirus (SFTS virus) recognized by a human monoclonal antibody (MAb 4-5)

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

In this work, we have developed a new approach to predict the epitopes of antigens that are recognized by a specific antibody. Our method is based on the “multiple copy simultaneous search” (MCSS) approach which identifies optimal locations of small chemical functional groups on the surfaces of the antibody, and identifying sequence patterns of peptides that can bind to the surface of the antibody. The identified sequence patterns are then used to search the amino-acid sequence of the antigen protein. The approach was validated by reproducing the binding epitope of HIV gp120 envelop glycoprotein for the human neutralizing antibody as revealed in the available crystal structure. Our method was then applied to predict the epitopes of two glycoproteins of a newly discovered bunyavirus recognized by an antibody named MAb 4-5. These predicted epitopes can be verified by experimental methods. We also discuss the involvement of different amino acids in the antigen–antibody recognition based on the distributions of MCSS minima of different functional groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yu XJ, Liang MF, Zhang SY, Liu Y, Li JD, Sun YL, Zhang L, Zhang QF, Popov VL, Li C, Qu J, Li Q, Zhang YP, Hai R, Wu W, Wang Q, Zhan FX, Wang XJ, Kan B, Wang SW, Wan KL, Jing HQ, Lu JX, Yin WW, Zhou H, Guan XH, Liu JF, Bi ZQ, Liu GH, Ren J, Wang H, Zhao Z, Song JD, He JR, Wan T, Zhang JS, Fu XP, Sun LN, Dong XP, Feng ZJ, Yang WZ, Hong T, Zhang Y, Walker DH, Wang Y, Li DX (2011) N Engl J Med 364:1523

    Article  CAS  Google Scholar 

  2. Bao CJ, Qi X, Wang H (2011) N Engl J Med 365:862

    Article  CAS  Google Scholar 

  3. McMullan LK, Folk SM, Kelly AJ, MacNeil A, Goldsmith CS, Metcalfe MG, Batten BC, Albarino CG, Zaki SR, Rollin PE, Nicholson WL, Nichol ST (2012) N Engl J Med 367:834

    Article  CAS  Google Scholar 

  4. Li DX (2012) Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi 25:81

    CAS  Google Scholar 

  5. Yu L, Zhang L, Sun L, Lu J, Wu W, Li C, Zhang G, Zhang F, Jin C, Wang X, Bi Z, Li D, Liang M (2012) PLoS ONE 7:e38291

    Article  CAS  Google Scholar 

  6. Scott JK, Smith GP (1990) Science 249:386

    Article  CAS  Google Scholar 

  7. Smith GP, Petrenko VA (1997) Chem Rev 97:391

    Article  CAS  Google Scholar 

  8. Cortese R, Felici F, Galfre G, Luzzago A, Monaci P, Nicosia A (1994) Trends Biotechnol 12:262

    Article  CAS  Google Scholar 

  9. Cwirla SE, Peters EA, Barrett RW, Dower WJ (1990) Proc Natl Acad Sci U S A 87:6378

    Article  CAS  Google Scholar 

  10. Geysen HM, Rodda SJ, Mason TJ (1986) Mol Immunol 23:709

    Article  CAS  Google Scholar 

  11. Halperin I, Wolfson H, Nussinov R (2003) Protein Sci 12:1344

    Article  CAS  Google Scholar 

  12. Schreiber A, Humbert M, Benz A, Dietrich U (2005) J Comput Chem 26:879

    Article  CAS  Google Scholar 

  13. Bublil EM, Freund NT, Mayrose I, Penn O, Roitburd-Berman A, Rubinstein ND, Pupko T, Gershoni JM (2007) Proteins 68:294

    Article  CAS  Google Scholar 

  14. Enshell-Seijffers D, Denisov D, Groisman B, Smelyanski L, Meyuhas R, Gross G, Denisova G, Gershoni JM (2003) J Mol Biol 334:87

    Article  CAS  Google Scholar 

  15. Tarnovitski N, Matthews LJ, Sui J, Gershoni JM, Marasco WA (2006) J Mol Biol 359:190

    Article  CAS  Google Scholar 

  16. Mayrose I, Shlomi T, Rubinstein ND, Gershoni JM, Ruppin E, Sharan R, Pupko T (2007) Nucleic Acids Res 35:69

    Article  CAS  Google Scholar 

  17. Huang J, Gutteridge A, Honda W, Kanehisa M (2006) BMC Bioinformatics 7:451

    Article  Google Scholar 

  18. Moreau V, Granier C, Villard S, Laune D, Molina F (2006) Bioinformatics 22:1088

    Article  CAS  Google Scholar 

  19. Mayrose I, Penn O, Erez E, Rubinstein ND, Shlomi T, Freund NT, Bublil EM, Ruppin E, Sharan R, Gershoni JM, Martz E, Pupko T (2007) Bioinformatics 23:3244

    Article  CAS  Google Scholar 

  20. Pacios LF, Tordesillas L, Palacin A, Sanchez-Monge R, Salcedo G and Diaz-Perales A (2011) J Chem Inf Model, 51 1465

    Google Scholar 

  21. Caflisch A, Karplus M (1995) J Mol Biol 252:672

    Article  CAS  Google Scholar 

  22. Caflisch A (1996) J Comput Aided Mol Des 10:372

    Article  CAS  Google Scholar 

  23. Zeng J, Treutlein HR, Rudy GB (2001) J Comput Aided Mol Des 15:573

    Article  CAS  Google Scholar 

  24. Zeng J (2000) Comb Chem High Throughput Screen 3:355

    Article  CAS  Google Scholar 

  25. Zeng J, Nheu T, Zorzet A, Catimel B, Nice E, Maruta H, Burgess AW, Treutlein HR (2001) Protein Eng 14:39

    Article  CAS  Google Scholar 

  26. Zeng J, Treutlein HR (1999) Protein Eng 12:457

    Article  CAS  Google Scholar 

  27. Kwong PD, Wyatt R, Robinson J, Sweet RW, Sodroski J, Hendrickson WA (1998) Nature 393:648

    Article  CAS  Google Scholar 

  28. Bernstein FC, Koetzle TF, Williams GJ, Meyer EF Jr, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M (1977) J Mol Biol 112:535

    Article  CAS  Google Scholar 

  29. Chen R, Chen W, Yang S, Wu D, Wang Y, Tian Y and Shi Y (2011) BMC Bioinformatics, 12 311

  30. Mackerell A et al (1998) J Phys Chem B 102:3586

    Article  CAS  Google Scholar 

  31. Simonson T, Brunger AT (1994) J Phys Chem 98:4683

    Article  CAS  Google Scholar 

  32. The PyMOL Molecular Graphics System (2012) Version 1.5.0.4 Schrödinger, LLC

  33. Tang X, Yang C, Gu Y, Song C, Zhang X, Wang Y, Zhang J, Hew CL, Li S, Xia N, Sivaraman J (2011) Proc Natl Acad Sci U S A 108:10266–10271

    Article  CAS  Google Scholar 

  34. Xu R, Karuse JC, McBride R, Paulson JC, Crowe JE Jr, Wilson IA (2013) Nat Struct Mol Biol 20:363–370

    Article  CAS  Google Scholar 

  35. Prabakaran P, Gan J, Wu YQ, Zhang MY, Dimitrov DS, Ji X (2006) J Mol Biol 357:82–99

    Article  CAS  Google Scholar 

  36. Sǎli A, Blundell TL (1993) J Mol Biol 234:779–815

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Jiangsu Province community development projects (BE2012768), Jiangsu Province Outstanding Medical Academic Leader Program (RC2011082), National Mega-Projects for Infectious Diseases from Ministry of Science and Technology, China and from the Ministry of Health, China (2013ZX09102029).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongjun Jiao, Jun Zeng or Herbert R. Treutlein.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 44 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, W., Zeng, X., Zhang, L. et al. Computational identification of epitopes in the glycoproteins of novel bunyavirus (SFTS virus) recognized by a human monoclonal antibody (MAb 4-5). J Comput Aided Mol Des 27, 539–550 (2013). https://doi.org/10.1007/s10822-013-9661-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-013-9661-7

Keywords