Abstract
Molecular dynamics (MD) simulations followed by principal component analysis were performed to study the conformational change of MDM2 induced by p53 and two inhibitor (P4 and MI63a) bindings. The results show that the hydrophobic cleft of MDM2 is very flexible and adaptive to different structural binding partners. The cleft tends to become wider and more stable as MDM2 binds to the three binding partners, while unbound MDM2 shows a narrower and pretty flexible cleft, which agrees with recent experimental data and theoretical studies. It was also found that the binding of P4 and p53 stabilizes the motion of the loop L2 linking the helix α2 and β strand (β3), but the presence of MI63a makes the motion of L2 disordered. In addition, the binding free energies of the three partners to MDM2 were calculated using molecular mechanics generalized Born surface area to explain the binding modes of these three partners to MDM2. This study will be helpful not only for better understanding the functional, concerted motion of MDM2, but also for the rational design of potent anticancer drugs targeting the p53–MDM2 interaction.








Similar content being viewed by others
References
Harris SL, Levine AJ (2005) Oncogene 24(17):2899
Fridman JS, Lowe SW (2003) Oncogene 22(56):9030
Stott FJ, Bates S, James MC, McConnell BB, Starborg M, Brookes S, Palmero I, Ryan K, Hara E, Vousden KH (1998) EMBO J 17(17):5001
Unger T, Juven-Gershon T, Moallem E, Berger M, Sionov RV, Lozano G, Oren M, Haupt Y (1999) EMBO J 18(7):1805
Nikolova PV, Wong KB, DeDecker B, Henckel J, Fersht AR (2000) EMBO J 19(3):370
Vousden KH, Lane DP (2007) Nat Rev Mol Cell Biol 8(4):275
Kussie PH, Gorina S, Marechal V, Elenbaas B, Moreau J, Levine AJ, Pavletich NP (1996) Science 274(5289):948
Chen HF, Luo R (2007) J Am Chem Soc 129(10):2930
Popowicz GM, Czarna A, Rothweiler U, Szwagierczak A, Krajewski M, Weber L, Holak TA (2007) Cell Cycle 6(19):2386
Moll UM, Petrenko O (2003) Mol Cancer Res 1(14):1001
Chi SW, Lee SH, Kim DH, Ahn MJ, Kim JS, Woo JY, Torizawa T, Kainosho M, Han KH (2005) J Biol Chem 280(46):38795
Chène P (2003) Nat Rev Cancer 3(2):102
Klein C, Vassilev L (2004) Br J Cancer 91(8):1415
Grönroos E, Terentiev AA, Punga T, Ericsson J (2004) Proc Natl Acad Sci USA 101(33):12165
Kritzer JA, Lear JD, Hodsdon ME, Schepartz A (2004) J Am Chem Soc 126(31):9468
Lee JH, Zhang Q, Jo S, Chai SC, Oh M, Im W, Lu H, Lim HS (2011) J Am Chem Soc 133:676
Phan J, Li Z, Kasprzak A, Li B, Sebti S, Guida W, Schönbrunn E, Chen J (2010) J Biol Chem 285(3):2174
Liu M, Li C, Pazgier M, Mao Y, Lv Y, Gu B, Wei G, Yuan W, Zhan C (2010) Proc Natl Acad Sci USA 107(32):14321
Pazgier M, Liu M, Zou G, Yuan W, Li C, Li J, Monbo J, Zella D, Tarasov SG (2009) Proc Natl Acad Sci USA 106(12):4665
Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C (2004) Science 303(5659):844
Hardcastle IR, Ahmed SU, Atkins H, Farnie G, Golding BT, Griffin RJ, Guyenne S, Hutton C, Källblad P, Kemp SJ (2006) J Med Chem 49(21):6209
Ding K, Lu Y, Nikolovska-Coleska Z, Wang G, Qiu S, Shangary S, Gao W, Qin D, Stuckey J, Krajewski K (2006) J Med Chem 49(12):3432
Shangary S, Wang S (2009) Annu Rev Pharmacol Toxicol 49:223
Shangary S, Qin D, McEachern D, Liu M, Miller RS, Qiu S, Nikolovska-Coleska Z, Ding K, Wang G, Chen J (2008) Proc Natl Acad Sci USA 105(10):3933
Grasberger BL, Lu T, Schubert C, Parks DJ, Carver TE, Koblish HK, Cummings MD, LaFrance LV, Milkiewicz KL, Calvo RR (2005) J Med Chem 48(4):909
Ding Y, Mei Y, Zhang JZH (2008) J Phys Chem B 112(36):11396
Hu G, Wang D, Liu X, Zhang Q (2010) J Comput Aid Mol Des 24(8):687
Lu SY, Jiang YJ, Zou JW, Wu TX (2011) J Mol Graph Model 30:167
Chen J, Wang J, Xu B, Zhu W, Li G (2011) J Mol Graph Model 30:46
Massova I, Kollman PA (1999) J Am Chem Soc 121(36):8133
Zhong H, Carlson HA (2005) Proteins 58(1):222
Chen J, Zhang D, Zhang Y, Li G (2012) Int J Mol Sci 13(2):2176
Espinoza-Fonseca L, Trujillo-Ferrara JG (2006) Biopolymers 83(4):365
Ichiye T, Karplus M (2004) Proteins 11(3):205
Levy R, Srinivasan A, Olson W, McCammon J (2004) Biopolymers 23(6):1099
Laberge M, Yonetani T (2008) Biophys J 94(7):2737
Amadei A, Linssen A, Berendsen HJC (2004) Proteins 17(4):412
Boehr DD, Nussinov R, Wright PE (2009) Nat Chem Biol 5(11):789
Wang J, Yang H, Zuo Z, Yan X, Wang Y, Luo X, Jiang H, Chen K, Zhu W (2010) J Phys Chem B 114(46):15172
Wu EL, Han KL, Zhang JZH (2008) Chem A Eur J 14(28):8704
Chen J, Zhang S, Liu X, Zhang Q (2010) J Mol Model 16(3):459
Kar P, Knecht V (2012) J Phys Chem B 116(8):2605
Meher BR, Wang Y (2012) J Phys Chem B 116(6):1884
Czarna A, Popowicz GM, Pecak A, Wolf S, Dubin G, Holak TA (2009) Cell Cycle 8(8):1176
Popowicz GM, Czarna A, Wolf S (2010) Cell Cycle 9(6):1104
Case DA, Darden TA, Cheatham III TE, Simmerling CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Roberts S, Hayik S, Roitberg A, Seabra G, Swails J, GÖtz AW, Kolossváry I, Wong KF, Paesani F, Vanicek J, Wolf RM, Liu J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Cai Q, Ye X, Wang J, Hsieh M-J, Cui G, Roe DR, Mathews DH, Seetin MG, Salomon-Ferrer R, Sagui C, Babin V, Luchko T, Gusarov S, Kovalenko A, Kollman PA (2012) AMBER 12, University of California, San Francisco
Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T (2003) J Comput Chem 24(16):1999
Jakalian A, Jack DB, Bayly CI (2002) J Comput Chem 23(16):1623
Jakalian A, Bush BL, Jack DB, Bayly CI (2000) J Comput Chem 21(2):132
Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) J Comput Chem 25(9):1157
Coleman TG, Mesick HC, Darby RL (1977) Ann Biomed Eng 5(4):322
Darden T, York D, Pedersen L (1993) J Chem Phys 98:10089
Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) J Chem Phys 103(19):8577
Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) J Comput Chem 26(16):1668
Miller BR III, McGee TD, Swails JM, Homeyer N, Gohlke H, Roitberg AE (2012) J Chem Theory Comput 8(9):3314
Onufriev A, Bashford D, Case DA (2004) Proteins 55(2):383
Gohlke H, Kiel C, Case DA (2003) J Mol Biol 330(4):891
Weiser J, Shenkin PS, Still WC (1999) J Comput Chem 20(2):217
Uhrinova S, Uhrin D, Powers H, Watt K, Zheleva D, Fischer P, McInnes C, Barlow PN (2005) J Mol Biol 350(3):587
Barrett CP, Hall BA, Noble MEM (2004) Acta Cryst 60(12):2280
Campos SR, Machuqueiro M, Baptista AM (2010) J Phys Chem B 114(39):12692
Joseph TL, Madhumalar A, Brown CJ, Lane DP, Verma C (2010) Cell Cycle 9(6):1167
Chen J, Yang M, Hu G, Shi S, Yi C, Zhang Q (2009) J Mol Model 15(10):1245
Chong LT, Duan Y, Wang L, Massova I, Kollman PA (1999) Proc Natl Acad Sci USA 96(25):14330
Xu Y, Wang R (2006) Proteins 64(4):1058
Acknowledgments
This work is supported by the National Natural Science Foundation of China (11104164, 11274206 and 31200545), Dr. Start-up Foundation of Shandong Jiaotong University and Natural Science Foundation of Shandong Jiaotong University.
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Chen, J., Wang, J., Zhu, W. et al. A computational analysis of binding modes and conformation changes of MDM2 induced by p53 and inhibitor bindings. J Comput Aided Mol Des 27, 965–974 (2013). https://doi.org/10.1007/s10822-013-9693-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10822-013-9693-z