Abstract
We present our predictions for the SAMPL4 hydration free energy challenge. Extensive all-atom Monte Carlo simulations were employed to sample the compounds in explicit solvent. While the focus of our study was to demonstrate well-converged and reproducible free energies, we attempted to address the deficiencies in the general Amber force field force field with a simple QM/MM correction. We show that by using multiple independent simulations, including different starting configurations, and enhanced sampling with parallel tempering, we can obtain well converged hydration free energies. Additional analysis using dihedral angle distributions, torsion-root mean square deviation plots and thermodynamic cycles support this assertion. We obtain a mean absolute deviation of 1.7 kcal mol−1 and a Kendall’s τ of 0.65 compared with experiment.







Similar content being viewed by others
References
Nicholls A, Mobley DL, Guthrie JP, Chodera JD, Bayly CI, Cooper MD, Pande VS (2008) J Med Chem 51:769–779
Shirts M, Mobley DL, Chodera JD (2007) Annu Rep Comput Chem 3:41–59
Sharp KA, Honig B (1990) Ann Rev Biophys Biophys Chem 19:301–332
Hirata F (2004) Molecular theory of solvation. Springer, Dordrecht
Mobley DL, Dummon E, Chodera JD, Dill KA (2007) J Phys Chem B 111:2242–2254
Rocklin GJ, Mobley DL, Dill KA (2013) J Chem Theory Comput 9:3072–3083
Guthrie JP (2014) SAMPL4, a blind challenge for computational solvation free energies: the compounds considered. ibid
Mobley DL, Wymer K, Lim NM (2014) Blind prediction of solvation free energies from the SAMPL4-challenge. ibid
Guthrie JP (2009) J Phys Chem B 113:4501–4507
Geballe MT, Skillman AG, Nichools A, Guthrie JP, Taylor PJ (2010) J Comput Aided Mol Des 24:259–279
Geballe MT, Guthrie JP (2012) J Comput Aided Mol Des 26:489–496
Marenich AV, Cramer CJ, Truhlar DG (2009) J Phys Chem B 113:6378–6396
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) J Comput Chem 25:1605–1612
Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) J Am Chem Soc 107:3902–3909
Gaussian 09 Revision A1 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels A D, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ Gaussian Inc Wallingford CT 2009
Wang JM, Wolf RM, Caldwell KW, Kollman PA, Case DA (2004) J Comput Chem 25:1157–1174
Jakalian A, Jack DB, Bayly CI (2002) J Comput Chem 23:1623–1641
Case DA, Cheatham T, Darden T, Gohlke H, Luo R, Merz KM Jr, Onufriev A, Simmerling C, Wang B, Woods R (2005) J Comput Chem 26:1668–1688
Molecular Operating Environment (MOE) (2012) 10; Chemical Computing Group Inc., 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7
Jorgensen WL, Chandrasekhar J, Madura JD, Impley RW, Klein ML (1983) J Chem Phys 79:926–935
Kirkwood JG (1935) J Chem Phys 3:300–313
Woods CJ, King MA, Essex JW (2003) J Phys Chem B 107:13703–13710
Shirts MR, Pande VS (2005) J Chem Phys 122:134508
Zwanzig RW (1954) J Chem Phys 22:1420–1427
Shirts MR, Pitera JW, Swope WC, Pande VS (2003) J Chem Phys 119:5740
Woods CJ, King MA, Essex JW (2003) J Phys Chem B 107:13711–13718
Swendsen RH, Wang JS (1986) Phys Rev Lett 57:2607–2609
Michel J, Verdonk ML, Essex JW (2007) J Chem Theory Comput 3:1645–1655
Beutler TC, Mark AE, van Schaik RC, Gerber PR, van Gunsteren WF (1994) Chem Phys Lett 222:529–539
Zacharias M, Straatsma TP, McCammon JA (1994) J Chem Phys 100:9025–9031
Genheden S, Bodnarchuk M, Michel J, Woods CJ ProtoMS 2.3. http://protoms.org/
Beierlein FR, Michel J, Essex JW (2011) J Phys Chem B 115:4911–4926
Becke AD (1993) J Chem Phys 98:5648
Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789
Kendall M (1938) Biomet 30:81–89
Efron B (1979) Anal Stat 7:1–26
Genheden S, Ryde U (2010) J Comput Chem 31:837–846
Cohen J (2009) Statistical power analysis for the behavioral sciences, 2nd edn. NYU Press, USA
Muddana HS, Sapra NV, Fenley AT, Gilson MK (2014) The SAMPL4 hydration challenge: evaluation of partial charge sets with explicit-water molecular dynamics simulations. ibid
Bergdorf M, Peter C, Hünenberger PH (2003) J Chem Phys 119:9129
Brunsteiner M, Boresch S (2000) J Chem Phys 112:6953
Brown SP, Muchmore SW, Hajduk PJ (2009) Drug Discov Today 14:420–427
Acknowledgments
For financial support we acknowledge AstraZeneca Pharmaceuticals and the Wenner-Gren foundations (SG) and Astex Pharmaceuticals (AICM). We acknowledge the use of the IRIDIS High Performance Computing Facility, and associated support services at the University of Southampton.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Genheden, S., Cabedo Martinez, A.I., Criddle, M.P. et al. Extensive all-atom Monte Carlo sampling and QM/MM corrections in the SAMPL4 hydration free energy challenge. J Comput Aided Mol Des 28, 187–200 (2014). https://doi.org/10.1007/s10822-014-9717-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10822-014-9717-3