Skip to main content
Log in

Theoretical studies on effective metal-to-ligand charge transfer characteristics of novel ruthenium dyes for dye sensitized solar cells

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The development of ruthenium dye-sensitizers with highly effective metal-to-ligand charge transfer (MLCT) characteristics and narrowed transition energy gaps are essential for the new generation of dye-sensitized solar cells. Here, we designed a novel anchoring ligand by inserting the cyanovinyl-branches inside the anchoring ligands of selected highly efficient dye-sensitizers and studied their intrinsic optical properties using theoretical methods. Our calculated results show that the designed ruthenium dyes provide good performances as sensitizers compared to the selected efficient dyes, because of their red-shift in the UV–visible absorption spectra with an increase in the absorption intensity, smaller energy gaps and thereby enhancing MLCT transitions. We found that, the designed anchoring ligand acts as an efficient “electron-acceptor” which boosts electron-transfer from a –NCS ligand to this ligand via a Ru-bridge, thus providing a way to lower the transition energy gap and enhance the MLCT transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hagfeldt A, Boschloo G, Sun LC, Kloo L, Pettersson H (2010) Chem Rev (Washington, DC) 110(11):6595–6663

  2. Santhanamoorthi N, Lo CM, Jiang JC (2013) J Phys Chem Lett 4(3):524–530

    Article  CAS  Google Scholar 

  3. Santhanamoorthi N, Lai KH, Taufany F, Jiang JC (2013) J Power Sour 242:464–471

    Article  CAS  Google Scholar 

  4. Meyer GJ (2010) ACS Nano 4(8):4337–4343

    Article  CAS  Google Scholar 

  5. Vougioukalakis GC, Philippopoulos AI, Stergiopoulos T, Falaras P (2011) Coord Chem Rev 255(21–22):2602–2621

    Article  CAS  Google Scholar 

  6. Nazeeruddin MK, Kay A, Rodicio I, Humphry-Baker R, Mueller E, Liska P, Vlachopoulos N, Graetzel M (1993) J Am Chem Soc 115(14):6382–6390

    Article  CAS  Google Scholar 

  7. Chen CY, Wu SJ, Wu CG, Chen JG, Ho KC (2006) Angew Chem-Int Ed 45(35):5822–5825

    Article  CAS  Google Scholar 

  8. Chen CY, Wang MK, Li JY, Pootrakulchote N, Alibabaei L, Ngoc-le CH, Decoppet JD, Tsai JH, Gratzel C, Wu CG, Zakeeruddin SM, Gratzel M (2009) ACS Nano 3(10):3103–3109

    Article  CAS  Google Scholar 

  9. Kuang DB, Ito S, Wenger B, Klein C, Moser JE, Humphry-Baker R, Zakeeruddin SM, Gratzel M (2006) J Am Chem Soc 128(12):4146–4154

    Article  CAS  Google Scholar 

  10. Chen KS, Liu WH, Wang YH, Lai CH, Chou PT, Lee GH, Chen K, Chen HY, Chi Y, Tung FC (2007) Adv Funct Mater 17(15):2964–2974

    Article  CAS  Google Scholar 

  11. Fantacci S, De Angelis F, Selloni A (2003) J Am Chem Soc 125(14):4381–4387

    Article  CAS  Google Scholar 

  12. Nazeeruddin MK, De Angelis F, Fantacci S, Selloni A, Viscardi G, Liska P, Ito S, Bessho T, Gratzel M (2005) J Am Chem Soc 127(48):16835–16847

    Article  CAS  Google Scholar 

  13. Gao F, Wang Y, Shi D, Zhang J, Wang MK, Jing XY, Humphry-Baker R, Wang P, Zakeeruddin SM, Gratzel M (2008) J Am Chem Soc 130(32):10720–10728

    Article  CAS  Google Scholar 

  14. Cao YM, Bai Y, Yu QJ, Cheng YM, Liu S, Shi D, Gao FF, Wang P (2009) J Phys Chem C 113(15):6290–6297

    Article  CAS  Google Scholar 

  15. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr.;, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1 Wallingford: Gaussian, Inc

  16. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  17. Lee C, Yang W, Parr RG (1988) Phys Rev B 37(2):785–789

    Article  CAS  Google Scholar 

  18. Rassolov VA, Ratner MA, Pople JA, Redfern PC, Curtiss LA (2001) J Comput Chem 22(9):976–984

    Article  CAS  Google Scholar 

  19. Rassolov VA, Pople JA, Ratner MA, Windus TL (1998) J Chem Phys 109(4):1223–1229

    Article  CAS  Google Scholar 

  20. Hay PJ, Wadt WR (1985) J Chem Phys 82(1):270–283

    Article  CAS  Google Scholar 

  21. Wadt WR, Hay PJ (1985) J Chem Phys 82(1):284–298

    Article  CAS  Google Scholar 

  22. Hay PJ, Wadt WR (1985) J Chem Phys 82(1):299–310

    Article  CAS  Google Scholar 

  23. Gorelsky SI (2013) SWizard program. University of Ottawa, Ottawa. http://www.sg-chem.net/

  24. Gorelsky SI, Lever ABP (2001) J Organomet Chem 635(1–2):187–196

    Article  CAS  Google Scholar 

  25. Becke AD (1993) J Chem Phys 98(2):1372–1377

    Article  CAS  Google Scholar 

  26. Ditchfield R, Hehre WJ, Pople JA (1971) J Chem Phys 54(2):724–728

    Article  CAS  Google Scholar 

  27. Francl MM, Pietro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DJ, Pople JA (1982) J Chem Phys 77(7):3654–3665

    Article  CAS  Google Scholar 

  28. Koch W, Holthausen MC (2000) A chemist’s guide to density functional theory, 2nd edn. Willey-VCH, Weinheim

    Google Scholar 

  29. Guo P, Ma RM, Guo LS, Yang LL, Liu JF, Zhang XX, Pan X, Dai SY (2010) J Mol Graphics Model 29(3):498–505

    Article  CAS  Google Scholar 

  30. De Angelis F, Fantacci S, Selloni A, Nazeeruddin MK (2005) Chem Phys Lett 415(1–3):115–120

    Article  Google Scholar 

  31. De Angelis F, Fantacci S, Selloni A (2004) Chem Phys Lett 389(1–3):204–208

    Article  Google Scholar 

  32. Le Bahers T, Labat F, Pauporte T, Laine PP, Ciofini I (2011) J Am Chem Soc 133(20):8005–8013

    Article  Google Scholar 

  33. Monari A, Assfeld X, Beley M, Gros PC (2011) J Phys Chem A 115(15):3596–3603

    Article  CAS  Google Scholar 

  34. Jacquemin D, Perpete EA, Scuseria GE, Ciofini I, Adamo C (2008) J Chem Theory Comput 4(1):123–135

    Article  CAS  Google Scholar 

  35. Shklover V, Ovchinnikov YE, Braginsky LS, Zakeeruddin SM, Gratzel M (1998) Chem Mater 10(9):2533–2541

    Article  CAS  Google Scholar 

  36. Shklover V, Nazeeruddin MK, Zakeeruddin SM, Barbe C, Kay A, Haibach T, Steurer W, Hermann R, Nissen HU, Gratzel M (1997) Chem Mater 9(2):430–439

    Article  Google Scholar 

  37. Nazeeruddin MK, Zakeeruddin SM, Humphry-Baker R, Jirousek M, Liska P, Vlachopoulos N, Shklover V, Fischer CH, Gratzel M (1999) Inorg Chem 38(26):6298–6305

    Article  CAS  Google Scholar 

  38. Mullay J (1985) J Am Chem Soc 107:7271–7275

    Article  CAS  Google Scholar 

  39. Bratsch SG (1985) J Chem Educ 62(2):101

    Article  CAS  Google Scholar 

  40. Boyd RJ, Edgecombe KE (1988) J Am Chem Soc 110:4183–4186

    Google Scholar 

  41. Katono M, Bessho T, Meng S, Humphry-Baker R, Rothenberger G, Zakeeruddin SM, Kaxiras E, Gratzel M (2011) Langmuir 27(23):14248–14252

    Article  CAS  Google Scholar 

  42. Ho HA, Brisset H, Frere P, Roncali J (1995) J Chem Soc Chem Commun 22:2309–2310

    Article  Google Scholar 

  43. Hara K, Sayama K, Ohga Y, Shinpo A, Suga S, Arakawa H (2001) Chem Commun (Cambridge, UK) (6):569–570

  44. Hara K, Tachibana Y, Ohga Y, Shinpo A, Suga S, Sayama K, Sugihara H, Arakawa H (2003) Sol Energy Mater Sol Cells 77(1):89–103

    Article  CAS  Google Scholar 

  45. Sayama K, Tsukagoshi S, Mori T, Hara K, Ohga Y, Shinpou A, Abe Y, Suga S, Arakawa H (2003) Sol Energy Mater Sol Cells 80(1):47–71

    Article  CAS  Google Scholar 

  46. Chen CY, Wu SJ, Li JY, Wu CG, Chen JG, Ho KC (2007) Adv Mater (Weinheim, Ger.) 19(22):3888–3891

  47. Gao FF, Wang Y, Zhang J, Shi D, Wang MK, Humphry-Baker R, Wang P, Zakeeruddin SM, Gratzel M (2008) Chem Commun (Cambridge, UK) (23):2635–2637

  48. Yu QJ, Liu S, Zhang M, Cai N, Wang Y, Wang P (2009) J Phys Chem C 113(32):14559–14566

    Article  CAS  Google Scholar 

  49. Huang ST, Hsu YC, Yen YS, Chou HH, Lin JT, Chang CW, Hsu CP, Tsai C, Yin DJ (2008) J Phys Chem C 112(49):19739–19747

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the National Science Council of Taiwan (NSC-98-2113-M011-001-MY3) for supporting this research financially and National Center of High-Performance Computing for computer time and facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Santhanamoorthi Nachimuthu or Jyh-Chiang Jiang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10822_2014_9742_MOESM1_ESM.doc

The results showing the absorption spectra of N3, C101, and C106 sensitizers (Fig S1), optimized structures of C101, C101-1, C106, C106-1, CYC-B11, and CYC-B11-1 sensitizers (Fig S2), frontier molecular orbitals of C106, C1016-1, CYC-B11, and CYC-B11-1 dye-sensitizers (Fig S3), and calculated absorption energies of selected dye sensitizers N3, C101, C106, CYC-B11(Table S1) are provided. (DOC 717 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, HT., Taufany, F., Nachimuthu, S. et al. Theoretical studies on effective metal-to-ligand charge transfer characteristics of novel ruthenium dyes for dye sensitized solar cells. J Comput Aided Mol Des 28, 565–575 (2014). https://doi.org/10.1007/s10822-014-9742-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-014-9742-2

Keywords

Navigation