Abstract
Here we analyze in detail the possible catalytic role of the associative mechanism in the γ-phosphoryl transfer reaction in the catalytic subunit of the mammalian cyclic AMP-dependent protein kinase (PKA) enzyme and its D166A mutant. We have used a complete solvated model of the ATP-Mg2-Kemptide/PKA system and good levels of theory (B3LYP/MM and MP2/MM) to determine several potential energy paths from different MD snapshots, and we present a deep analysis of the interaction distances and energies between ligands, metals and enzyme residues. We have also tested the electrostatic stabilization of the transition state structures localized herein with the charge balance hypothesis. Overall, the results obtained in this work reopen the discussion about the plausibility of the associative reaction pathway and highlight the proposed role of the catalytic triad Asp166–Lys168–Thr201.





Similar content being viewed by others
References
Cohen P (2002) Nat Rev Drug Discov 1:309–315
Johnson L, Noble M, Owen D (1996) Cell 85:149–158
Cohen P (2001) Eur J Biochem 268:5001–5010
Adams JA (2001) Chem Rev 101:2271–2290
Johnson DA, Akamine P, Radzio-Andzelm E, Madhusudan, Taylor SS (2001) Chem Rev 101:2243–2270
Francis S, Corbin J (1994) Annu Rev Physiol 56:237–272
Smith C, Radzio-Andzelm E, Madhusudan, Akamine P, Taylor SS (1999) Prog Biophys Mol Biol 71:313–341
Taylor SS, Kornev A (2012) PKA: prototype for dynamic signaling in time and space. In: Wall ME (ed) Quantitative biology: from molecular to cellular systems. CRC Press, Boca Raton, Fl (USA), pp 267–298
Zheng J, Trafny E, Knighton D, Xuong N-H, Taylor SS, Ten Eyck L, Sowadski J (1993) Acta Crystallogr D Biol Crystallogr D49:362–365
Masterson L, Shi L, Metcalfe E, Gao J, Taylor SS, Veglia G (2011) Proc Natl Acad Sci USA 108:6969–6974
Armstrong R, Kondo H, Granot J, Kaiser E, Mildvan A (1979) Biochemistry 18:1230–1238
Shaffer J, Adams JA (1999) Biochemistry 38:12072–12079
Adams JA, Taylor SS (1992) Biochemistry 31:8516–8522
Bastidas A, Deal M, Steichen J, Guo Y, Wu J, Taylor SS (2013) J Am Chem Soc 135:4788–4798
Jacobsen DM, Bao ZQ, O’Brien P, Brooks CL III, Young MA (2012) J Am Chem Soc 134:15357–15370
Gerlits O, Waltman M, Taylor SS, Langan P, Kovalevsky A (2013) Biochemistry 52:3721–3727
Gerlits O, Das A, Keshwani M, Taylor SS, Waltman M, Langan P, Heller W, Kovalevsky A (2014) Biochemistry 53:3179–3186
Cheng Y, Zhang Y, McCammon J (2005) J Am Chem Soc 127:1553–1562
Valiev M, Kawai R, Adams JA, Weare JH (2003) J Am Chem Soc 125:9926–9927
Montenegro M, Garcia-Viloca M, Lluch JM, González-Lafont À (2011) Phys Chem Chem Phys 13:530–539
Madhusudan, Akamine P, Xuong N-H, Taylor SS (2002) Nat Struct Biol 9:273–277
Yang J, Ten Eyck LF, Xuong N-H, Taylor SS (2004) J Mol Biol 336:473–487
Aimes R, Hemmer W, Taylor SS (2000) Biochemistry 39:8325–8332
Gibbs C, Zoller M (1991) J Biol Chem 266:8923–8931
Madhusudan, Trafny E, Xuong N-H, Adams JA, Ten Eyck L, Taylor SS, Sowadski J (1994) Protein Sci 3:176–187
Bossemeyer D, Engh R, Kinzel V, Ponstingl H, Huber R (1993) EMBO J 12:849–859
Skamnaki V, Owen D, Noble M, Lowe E, Lowe G, Oikonomakos N, Johnson L (1999) Biochemistry 38:14718–14730
Hart JC, Sheppard DW, Hillier IH, Burton NA (1999) Chem Commun 1:79–80
Sheppard DW, Burton NA, Hillier IH (2000) J Mol Struct (Theochem) 506:35–44
Hutter MC, Helms V (2003) Int J Quantum Chem 95:479–486
Valiev M, Yang J, Adams JA, Taylor SS, Weare J (2007) J Phys Chem B 111:13455–13464
Díaz N, Field M (2004) J Am Chem Soc 126:529–542
Cheng Y, Zhang Y, McCammon J (2006) Protein Sci 15:672–683
Montenegro M, Garcia-Viloca M, González-Lafont À, Lluch JM (2007) J Comput Aided Mol Des 21:603–615
Montenegro M, Masgrau L, González-Lafont À, Lluch JM, Garcia-Viloca M (2012) Biophys Chem 161:17–28
Krishna SS, Zhou T, Daugherty M, Osterman A, Zhang H (2001) Biochemistry 40:10810–10818
Thoden JB, Holden HM (2005) J Biol Chem 280:32784–32791
Prasad B, Plotnikov N, Warshel A (2013) J Phys Chem B 117:153–163
Lee J, Yang W (2006) Cell 127:1349–1360
Jin Y, Cliff M, Baxter N, Dannatt H, Hounslow A, Bowler M, Blackburn G, Waltho J (2012) Angew Chem Int Ed 51:12242–12245
Sherwood P, de Vries AH, Guest MF, Schreckenbach G, Catlow CRA, French SA, Sokol AA, Bromley ST, Thiel W, Turner AJ, Billeter S, Terstegen F, Thiel S, Kendrick J, Rogers SC, Casci J, Watson M, King F, Karlsen E, Sjøvoll M, Fahmi A, Schäfer A, Lennartz C (2003) J Mol Struct (Theochem) 632:1–28
Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C (1989) Chem Phys Lett 162:165–169
Slater JC (1951) Phys Rev 81:385–390
Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200–1211
Becke AD (1988) Phys Rev A 38:3098–3100
Becke AD (1993) J Chem Phys 98:5648–5652
Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623–11627
Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789
Smith W, Forester T (1996) J Mol Graph 14:136–141
MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiórkiewicz-Kuczera J, Yin D, Karplus M (1998) J Phys Chem B 102:3586–3616
MacKerell AD, Feig M, Brooks CL (2004) J Am Chem Soc 126:698–699
de Vries AH, Sherwood P, Collins SJ, Rigby AM, Rigutto M, Kramer G (1999) J Phys Chem B 103:6133–6141
Sherwood P, de Vries AH, Collins SJ, Greatbanks SP, Burton NA, Vincent MA, Hillier IH (1997) Faraday Discuss Chem Soc 106:79–92
Liu D, Nocedal J (1989) Math Prog 45:503–528
Baker J (1986) J Comput Chem 7:385–395
Billeter SR, Turner AJ, Thiel W (2000) Phys Chem Chem Phys 2:2177–2186
Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735–746
Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14(33–38):27–38
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) J Comput Chem 25:1605–1612
Khavrutskii I, Grant B, Taylor SS, McCammon J (2009) Biochemistry 48:11532–11545
Grant B, Adams JA (1996) Biochemistry 35:2022–2029
Szarek P, Dyguda-Kazimierowicz E, Tachibana A, Sokalski W (2008) J Phys Chem B 112:11819–11826
Garcia-Viloca M, Truhlar D, Gao J (2003) Biochemistry 42:13558–13575
Acknowledgments
This work was supported by the “Ministerio de Economía y Competitividad” through Project CTQ2011-24292 and by the “Generalitat de Catalunya” through Project 2009SGR409. Use of computational facilities at the “Centre de Serveis Científics i Acadèmics de Catalunya (CESCA)” is also gratefully acknowledged. Ayax Pérez-Gallegos acknowledges “Consejo Nacional de Ciencia y Tecnología (CONACYT)” Supporting Grant 213582.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Pérez-Gallegos, A., Garcia-Viloca, M., González-Lafont, À. et al. A QM/MM study of the associative mechanism for the phosphorylation reaction catalyzed by protein kinase A and its D166A mutant. J Comput Aided Mol Des 28, 1077–1091 (2014). https://doi.org/10.1007/s10822-014-9786-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10822-014-9786-3