Skip to main content

Advertisement

Log in

Insight into the modified Ibalizumab–human CD4 receptor interactions: using a computational binding free energy approach

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Antibody drugs are very useful tools for the treatment of many chronic diseases. Recently, however, patients and doctors have encountered the problem of drug resistance. How to improve the affinity of antibody drugs has therefore become a pressing issue. Ibalizumab is a humanized monoclonal antibody that binds human CD4, the primary receptor for human immunodeficiency virus type 1. This study investigates the mutation residues of the complementarity determining regions of Ibalizumab. We propose using the wild and mutations of Ibalizumab–human CD4 receptor complex structures, molecular dynamics techniques, alanine-scanning mutagenesis calculations and solvated interaction energies methods to predict the binding free energy of the Ibalizumab–human CD4 receptor complex structures. This work found that revealed three key positions (31th, 32th and 33th in HCDR-1) of the residues may play an important role in Ibalizumab–human CD4 receptor complex interactions. Therefore, bioengineering substitutions of the three key positions and increasing number of intermolecular interactions (HCDR-1 of Ibalizumab/human CD4 receptor) might improve the binding affinities of this complex structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Frederick B, Charles B (1922) J Lab Clin Med 7:251

    Google Scholar 

  2. Fallacara AL, Tintori C, Radi M, Schenone S, Botta M (2014) J Chem Inf Model 54(5):1325

    Article  CAS  Google Scholar 

  3. Leader B, Baca QJ, Golan DE (2008) Nat Rev Drug Discov 7(1):21

    Article  CAS  Google Scholar 

  4. Palella FJ, Delaney KM, Moorman AC, Loveless MO, Fuhrer J, Satten GA, Aschman DJ, Holmberg SD (1998) N Engl J Med 338(13):853

    Article  Google Scholar 

  5. Rivera A, Ro G, Van Epps HL, Simpson T, Leiner I, Sant’Angelo DB, Pamer EG (2006) Immunity 25(4):665

    Article  CAS  Google Scholar 

  6. Xu H, Littman DR (1993) Cell 74(4):633

    Article  CAS  Google Scholar 

  7. Doyle C, Strominger JL (1987) Nature 330(6145):256

    Article  CAS  Google Scholar 

  8. Lu M, Blacklow SC, Kim PS (1995) Nat Struct Mol Biol 2(12):1075

    Article  CAS  Google Scholar 

  9. Modrow S, Hahn BH, Shaw GM, Gallo RC, Wong-Staal F, Wolf H (1987) J Virol 61(2):570

    CAS  Google Scholar 

  10. Leonard CK, Spellman MW, Riddle L, Harris RJ, Thomas JN, Gregory TJ (1990) J Biol Chem 265(18):10373

    CAS  Google Scholar 

  11. Cohen J (1996) Science 272(5263):809

    Article  CAS  Google Scholar 

  12. Overbaugh J, Morris L (2012) Cold Spring Harb Perspect Med 2(1):a007039

  13. Mikell I, Sather DN, Kalams SA, Altfeld M, Alter G, Stamatatos L (2011) PLoS Pathog 7(1):e1001251

    Article  CAS  Google Scholar 

  14. Huang J, Ofek G, Laub L, Louder MK, Doria-Rose NA, Longo NS, Imamichi H, Bailer RT, Chakrabarti B, Sharma SK, Alam SM, Wang T, Yang Y, Zhang B, Migueles SA, Wyatt R, Haynes BF, Kwong PD, Mascola JR, Connors M (2012) Nature 491(7424):406

  15. Gach JS, Achenbach CJ, Chromikova V, Berzins B, Lambert N, Landucci G, Forthal DN, Katlama C, Jung BH, Murphy RL (2014) PLoS ONE 9(1):e85371

    Article  Google Scholar 

  16. Connors M, Huang J, Laub LB, Kwong P, Nabel G, Mascola JR, Zhang B, Rudicell RS, Georgiev I, Yang Y. Neutralizing gp41 antibodies and their use. Google Patents, 2013

  17. Burkly L, Olson D, Shapiro R, Winkler G, Rosa J, Thomas D, Williams C, Chisholm P (1992) J Immunol 149(5):1779

    CAS  Google Scholar 

  18. Bruno CJ, Jacobson JM (2010) J Antimicrob Chemother 65(9):1839

    Article  CAS  Google Scholar 

  19. Boon L, Holland B, Gordon W, Liu P, Shiau F, Shanahan W, Reimann KA, Fung M (2002) Toxicology 172(3):191

    Article  CAS  Google Scholar 

  20. Freeman MM, Seaman MS, Rits-Volloch S, Hong X, Kao C-Y, Ho DD, Chen B (2010) Structure 18(12):1632

    Article  CAS  Google Scholar 

  21. Toma J, Weinheimer SP, Stawiski E, Whitcomb JM, Lewis ST, Petropoulos CJ, Huang W (2011) J Virol 85(8):3872

    Article  CAS  Google Scholar 

  22. Dolinsky TJ, Czodrowski P, Li H, Nielsen JE, Jensen JH, Klebe G, Baker NA (2007) Nucleic Acids Res 35(Suppl 2):W522

    Article  Google Scholar 

  23. Yang XQ, Liu JY, Li XC, Chen MH, Zhang YL (2014) J Chem Inf Model 54(5):1356

    Article  CAS  Google Scholar 

  24. Allcorn LC, Martin ACR (2002) Bioinformatics 18(1):175

    Article  CAS  Google Scholar 

  25. Salomon-Ferrer R, Case DA, Walker RC (2013) Wiley Interdiscip Rev Comput Mol Sci 3(2):198

    Article  CAS  Google Scholar 

  26. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79(2):926

    Article  CAS  Google Scholar 

  27. Andersen HC (1980) J Chem Phys 72(4):2384

    Article  CAS  Google Scholar 

  28. Ryckaert J-P, Ciccotti G, Berendsen HJC (1977) J Comput Phys 23(3):327

    Article  CAS  Google Scholar 

  29. Darden T, York D, Pedersen L (1993) J Chem Phys 98(12):10089

    Article  CAS  Google Scholar 

  30. Roe DR, Cheatham TE (2013) J Chem Theory Comput 9(7):3084

    Article  CAS  Google Scholar 

  31. Diller DJ, Humblet C, Zhang X, Westerhoff LM (2010) Proteins Struct Funct Bioinform 78(10):2329

    Article  CAS  Google Scholar 

  32. Perdih A, Bren U, Solmajer T (2009) J Mol Model 15(8):983

    Article  CAS  Google Scholar 

  33. Bren U, Martínek V, Florián J (2006) J Phys Chem B 110(21):10557

    Article  CAS  Google Scholar 

  34. Åqvist J, Medina C, Samuelsson J-E (1994) Protein Eng 7(3):385

    Article  Google Scholar 

  35. Cui Q, Sulea T, Schrag JD, Munger C, Hung M-N, Naïm M, Cygler M, Purisima EO (2008) J Mol Biol 379(4):787

    Article  CAS  Google Scholar 

  36. Purisima EO (1998) J Comput Chem 19(13):1494

    Article  CAS  Google Scholar 

  37. Bhat S, Purisima EO (2006) Proteins Struct Funct Bioinform 62(1):244

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Kaohsiung Medical University of the Republic of China and the National Science Council of the Republic of China, Taiwan, for supporting this research (Contract No. NSC 101-2113-M-492-001-MY2, KMU-Q103012 and KMU-TP103C00).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeng-Tseng Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YT., Chuang, LY. Insight into the modified Ibalizumab–human CD4 receptor interactions: using a computational binding free energy approach. J Comput Aided Mol Des 29, 69–78 (2015). https://doi.org/10.1007/s10822-014-9805-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-014-9805-4

Keywords

Navigation