Abstract
The binding properties of sequence-specific nucleic acids (aptamers) to low-molecular-weight ligands, macromolecules and even cells attract substantial scientific interest. These ligand-DNA complexes found different applications for sensing, nanomedicine, and DNA nanotechnology. Structural information on the aptamer-ligand complexes is, however, scarce, even though it would open-up the possibilities to design novel features in the complexes. In the present study we apply molecular docking simulations to probe the features of an experimentally documented L-argininamide aptamer complex. The docking simulations were performed using AutoDock 4.0 and YASARA Structure software, a well-suited program for following intermolecular interactions and structures of biomolecules, including DNA. We explored the binding features of a DNA aptamer to L-argininamide and to a series of arginine derivatives or arginine-like ligands. We find that the best docking results are obtained after an energy-minimization of the parent ligand-aptamer complexes. The calculated binding energies of all mono-substituted guanidine-containing ligands show a good correlation with the experimentally determined binding constants. The results provide valuable guidelines for the application of docking simulations for the prediction of aptamer-ligand structures, and for the design of novel features of ligand-aptamer complexes.







Similar content being viewed by others
Notes
It should be noted that upon retrieval of the structure, the C-terminal moiety of the LARM ligands was not the expected carboxamide, but an enol (i.e. Cα(OH)=CH2). This was first corrected into the carboxamide before the rest of the computations were performed.
References
Mayer G (2009) Angew Chem Int Ed 48:2672–2689
Patel DJ, Suri AK (2000) Rev Mol Biotechnol 74:39–60
Campolongo MJ, Tan SJ, Xu JF, Luo D (2010) Adv Drug Deliv Rev 62:606–616
Gallas A, Alexander C, Davies MC, Purib S, Allen S (2013) Chem Soc Rev 42:7983–7997
Liu X, Xu Y, Yu T, Clifford C, Liu Y, Yan H, Chang Y (2012) Nano Lett 12:4254–4259
Afonin KA, Grabow WW, Walker FM, Bindewald E, Dobrovolskaia MA, Shapiro BA, Jaeger L (2011) Nat Protoc 6:2022–2034
Willner I, Zayats M (2007) Angew Chem Int Ed 46:6408–6418
Kolpashchikov DM (2010) Chem Rev 110:4709–4723
Wang F, Lu CH, Willner I (2014) Chem Rev 114:2881–2941
Famulok M, Mayer G (2011) Acc Chem Res 44:1349–1358
Wilner OI, Willner I (2012) Chem Rev 112:2528–2556
Liu D, Park SH, Reif JH, La Bean TH (2004) Proc Natl Acad Sci USA 101:717–722
Krishnan Y, Simmel FC (2011) Angew Chem Int Ed 50:3124–3156
Teller C, Willner I (2010) Curr Opin Biotechnol 21:376–391
Yan H, Zhang X, Shen Z, Seeman NC (2002) Nature 415:62–65
Bath J, Turberfield AJ (2007) Nat Nanotechnol 2:275–284
Beissenhirtz MK, Willner I (2006) Org Biomol Chem 4:3392–3401
Okamoto A, Tanaka K, Saito I (2004) J Am Chem Soc 126:9458–9463
Stojanovic MN, Stefanovic D (2003) Nat Biotechnol 21:1069–1074
Tuerk C, Gold L (1990) Science 249:505–510
Ellington AD, Szostak JW (1990) Nature 346:818–822
Sefah K, Shangguan D, Xiong X, O’Donoghue MB, Tan W (2010) Nat Protoc 5:1169–1185
Feigon J, Dieckmann T, Smith FW (1996) Chem Biol 3:611–617
Thomas JR, Hergenrother PJ (2008) Chem Rev 108:1171–1224
Mannironi C, DiNardo A, Fruscoloni P, Tocchini-Valentini GP (1997) Biochemistry 36:9726–9734
Padlan CS, Malashkevich VN, Almo SC, Levy M, Brenowitz M, Girvin ME (2014) RNA 20:447–461
Krauss IR, Pica A, Merlino A, Mazzarella L, Sica F (2013) Acta Cryst D69:2403–2411
McKeague M, DeRosa MC (2012) J Nucl Acids Article ID 748913, 20 pages. See also: the Aptamer Base (http://aptamerbase.semanticscience.org/)
Stelzer AC, Frank AT, Kratz JD, Swanson MD, Gonzalez-Hernandez MJ, Lee J, Andricioaei I, Markovitz DM, Al-Hashimi HM (2011) Nat Chem Biol 7:553–559
Fulle S, Christ NA, Knestner E, Gohlke H (2010) J Chem Inf Model 50:1489–1501
Haller A, Soulière MF, Micura R (2011) Acc Chem Res 44:1339–1348
Fulle S, Gohlke H (2010) J Mol Recognit 23:220–231
Pfeffer P, Gohlke H (2007) J Chem Inf Model 47:1868–1876
Fadrná E, Spackova N, Sarzynska J, Koca J, Orozco M, Cheatham TE III, Kulinski T, Sponer J (2009) J Chem Theory Comput 5:2514–2530
Westhof E, Cruz JA (2009) Cell 136:604–609
Phan AT, Kuryavyi V, Patel DJ (2006) Curr Opin Struct Biol 16:288–298
Boehr DD, Nussinov R, Wright PE (2009) Nat Chem Biol 5:789–796
Beckers MLM, Buydens LMC (1998) J Comput Chem 19:695–715
Zhang Q, Sun X, Watt ED, Al-Hashimi HM (2006) Science 311:653–656
Bosshard HR (2001) News Physiol Sci 16:171–173
Guilbert C, James TL (2008) J Chem Inf Model 48:1257–1268
Krieger E, Darden T, Nabuurs S, Finkelstein A, Vriend G (2004) Proteins 57:678–683
Caulfield T, Devkota B (2012) Proteins 80:2489–2500
Harada K, Frankel AD (1995) EMBO J 14:5798–5811
Lin PO, Tong SJ, Louis SR, Chang Y, Chen WY (2009) Phys Chem Chem Phys 11:9744–9750
Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) J Comput Chem 19:1639–1662
Peréz A, Marchán I, Svozil D, Sponer J, Cheatham TE III, Laughton CA, Orozco M (2007) Biophys J 92:3817–3829
Holt PA, Chaires JB, Trent JO (2008) J Chem Inf Model 48:1602–1615
Lin PO, Tsai C-W, Wu JW, Ruaan R-C, Chen W-Y (2012) Biotechnol J 7:1367–1375
Bisignano P, Moran O (2010) Biochimie 92:51–57
Krieger E, Dunbrack RL, Hooft RW, Krieger B (2012) Methods Mol Biol 819:405–421
Albada HB, Rosati F, Coquière D, Roelfes G, Liskamp RMJ (2011) Eur J Org Chem 2011:1714–1720
Snyder RD, Holt PA, Maguire JM, Trent JO (2013) Environ Mol Mutagen 54:668–681
Ricci CG, Netz PA (2009) J Chem Inf Model 49:1925–1935
Netz PA (2012) Int J Quant Chem 122:3296–3302
Tooth YY, Lipkowitz KB, Long EC (2006) J Chem Theory Comput 2:1453–1463
Rohs R, Bloch I, Sklenar H, Shakked Z (2005) Nucl Acids Res 33:7048–7057
Gilad Y, Senderowitz H (2014) J Chem Inf Model 54:96–107
Reshetnikov R, Golovin A, Spiridonova V, Kopylov A, Sponer J (2010) J Chem Theory Comput 6:3003–3014
Lin CH, Patel DJ (1996) Nat Struct Biol 3:1046–1050
Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) J Comput Chem 30:2785–2791
Wang J, Cieplak P, Kollman PA (2000) J Comput Chem 21:1049–1074
Jakalian A, Jack DB, Dayly CI (2002) J Comput Chem 23:1623–1641
Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T (2003) J Comput Chem 24:1999–2012
Kawata M, Nagashima U (2001) Chem Phys Lett 340:165–172
Krieger E, Nielsen JE, Spronk CA, Vriend G (2006) J Mol Graph Model 25:481–486
Huey R, Morris GM, Olson AJ, Goodsell DS (2007) J Comput Chem 28:1145–1152
Solis FJ, Wets RJB (1981) Math Oper Res 6:19–30
Acknowledgments
This research is supported by the Israel Science Foundation.
Conflict of Interest
The authors declare that they have no conflict of interest.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Albada, H.B., Golub, E. & Willner, I. Computational docking simulations of a DNA-aptamer for argininamide and related ligands. J Comput Aided Mol Des 29, 643–654 (2015). https://doi.org/10.1007/s10822-015-9844-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10822-015-9844-5