Skip to main content
Log in

An integrated suite of modeling tools that empower scientists in structure- and property-based drug design

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Structure- and property-based drug design is an integral part of modern drug discovery, enabling the design of compounds aimed at improving potency and selectivity. However, building molecules using desktop modeling tools can easily lead to poor designs that appear to form many favorable interactions with the protein’s active site. Although a proposed molecule looks good on screen and appears to fit into the protein site X-ray crystal structure or pharmacophore model, doing so might require a high-energy small molecule conformation, which would likely be inactive. To help scientists make better design decisions, we have built integrated, easy-to-use, interactive software tools to perform docking experiments, de novo design, shape and pharmacophore based database searches, small molecule conformational analysis and molecular property calculations. Using a combination of these tools helps scientists in assessing the likelihood that a designed molecule will be active and have desirable drug metabolism and pharmacokinetic properties. Small molecule discovery success requires project teams to rapidly design and synthesize potent molecules with good ADME properties. Empowering scientists to evaluate ideas quickly and make better design decisions with easy-to-access and easy-to-understand software on their desktop is now a key part of our discovery process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lee M-L, Aliagas I, Dotson J et al (2012) DEGAS: sharing and tracking target compound ideas with external collaborators. J Chem Inf Model 52:278–284. doi:10.1021/ci2003297

    Article  CAS  Google Scholar 

  2. Benchware 3D Explorer Version 2.3 Tripos, Saint Louis. http://www.certara.com/products/molmod/bw3de. Accessed 16 Nov 2013

  3. Molecular operating environment (MOE) Version 2012.10 Chemical Computing Group Inc., Quebec. www.chemcomp.com. Accessed 16 Nov 2013

  4. The PyMOL Molecular Graphics System Version 1.5 Schrodinger LLC, New York. www.pymol.org. Accessed 16 Nov 2013

  5. FastROCS Version 1.1 OpenEye Scientific Software, Sante Fe. www.eyesopen.com/fastrocs. Accessed 16 Nov 2013

  6. Nicholls A, McGaughey GB, Sheridan RP et al (2010) Molecular shape and medicinal chemistry: a perspective. J Med Chem 53:3862–3886. doi:10.1021/jm900818s

    Article  CAS  Google Scholar 

  7. Liang J, Tsui V, Van Abbema A et al (2013) Lead identification of novel and selective TYK2 inhibitors. Eur J Med Chem 67:175–187. doi:10.1016/j.ejmech.2013.03.070

    Article  CAS  Google Scholar 

  8. Liang J, Van Abbema A, Balazs M et al (2013) Lead optimization of a 4-aminopyridine benzamide scaffold to identify potent, selective, and orally bioavailable TYK2 inhibitors. J Med Chem 56:4521–4536. doi:10.1021/jm400266t

    Article  CAS  Google Scholar 

  9. Pipeline Pilot Version 7.0 Accelrys, San Diego. www.accelrys.com/products/pipeline-pilot. Accessed 16 Nov 2013

  10. Glide Version 6.0 Schrodinger LLC, New York. www.schrodinger.com/productpage/14/5/. Accessed 16 Nov 2013

  11. Friesner RA, Banks JL, Murphy RB et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749. doi:10.1021/jm0306430

    Article  CAS  Google Scholar 

  12. Warren GL, Andrews CW, Capelli A-M et al (2006) A critical assessment of docking programs and scoring functions. J Med Chem 49:5912–5931. doi:10.1021/jm050362n

    Article  CAS  Google Scholar 

  13. Warren GL, Do TD, Kelley BP et al (2012) Essential considerations for using protein–ligand structures in drug discovery. Drug Discov Today 17:1270–1281. doi:10.1016/j.drudis.2012.06.011

    Article  CAS  Google Scholar 

  14. Liebeschuetz J, Hennemann J, Olsson T, Groom CR (2012) The good, the bad and the twisted: a survey of ligand geometry in protein crystal structures. J Comput Aided Mol Des 26:169–183. doi:10.1007/s10822-011-9538-6

    Article  CAS  Google Scholar 

  15. MoKa Molecular Discovery, Perugia. www.moldiscovery.com/soft_moka.php. Accessed 16 Nov 2013

  16. GRID molecular discovery, Perugia. www.moldiscovery.com/soft_moka.php. Accessed 3 Jan 2015

  17. Wan PTC, Garnett MJ, Roe SM et al (2004) Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116:855–867

    Article  CAS  Google Scholar 

  18. Schneider EV, Böttcher J, Blaesse M et al (2011) The structure of CDK8/CycC implicates specificity in the CDK/cyclin family and reveals interaction with a deep pocket binder. J Mol Biol 412:251–266. doi:10.1016/j.jmb.2011.07.020

    Article  CAS  Google Scholar 

  19. Firestein R, Bass AJ, Kim SY et al (2008) CDK8 is a colorectal cancer oncogene that regulates |[bgr]|-catenin activity. Nature 455:547–551. doi:10.1038/nature07179

    Article  CAS  Google Scholar 

  20. Firestein R, Hahn WC (2009) Revving the throttle on an oncogene: cDK8 takes the driver seat. Cancer Res 69:7899–7901. doi:10.1158/0008-5472.CAN-09-1704

    Article  CAS  Google Scholar 

  21. Davis MI, Hunt JP, Herrgard S et al (2011) Comprehensive analysis of kinase inhibitor selectivity. Nat Biotechnol 29:1046–1051. doi:10.1038/nbt.1990

    Article  CAS  Google Scholar 

  22. Liu Y, Gray NS (2006) Rational design of inhibitors that bind to inactive kinase conformations. Nat Chem Biol 2:358–364. doi:10.1038/nchembio799

    Article  CAS  Google Scholar 

  23. ROCS Version 3.1.2 OpenEye Scientific Software, Sante Fe. www.eyesopen.com/rocs. Accessed 16 Nov 2013

  24. McGaughey GB, Sheridan RP, Bayly CI et al (2007) Comparison of topological, shape, and docking methods in virtual screening. J Chem Inf Model 47:1504–1519. doi:10.1021/ci700052x

    Article  CAS  Google Scholar 

  25. Hill AP, Young RJ (2010) Getting physical in drug discovery: a contemporary perspective on solubility and hydrophobicity. Drug Discov Today 15:648–655. doi:10.1016/j.drudis.2010.05.016

    Article  CAS  Google Scholar 

  26. Hann MM, Keserű GM (2012) Finding the sweet spot: the role of nature and nurture in medicinal chemistry. Nat Publ Group 11:355–365. doi:10.1038/nrd3701

    CAS  Google Scholar 

  27. Ortwine DF, Aliagas I (2013) Physicochemical and DMPK in silico models: facilitating their use by medicinal chemists. Mol Pharm 10:1153–1161. doi:10.1021/mp3006193

    Article  CAS  Google Scholar 

  28. Aliagas I A (2015, accepted) Probabilistic method to report predictions from a human liver microsome stability QSAR model: a practical tool for drug discovery. J Comput Aided Mol Des 29(4):327–338. doi:10.1007/s10822-015-9838-3

  29. Price DA, Blagg J, Jones L et al (2009) Physicochemical drug properties associated with in vivotoxicological outcomes: a review. Expert Opin Drug Metab Toxicol 5:921–931. doi:10.1517/17425250903042318

    Article  CAS  Google Scholar 

  30. Wager TT, Hou X, Verhoest PR, Villalobos A (2010) Moving beyond rules: the development of a central nervous system multiparameter optimization (CNS MPO) approach to enable alignment of druglike properties. ACS Chem Neurosci 1:435–449. doi:10.1021/cn100008c

    Article  CAS  Google Scholar 

  31. Lipinski C, Lombardo F, Dominy B, Feeney P (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25

    Article  CAS  Google Scholar 

  32. Liu L, Halladay JS, Shin Y et al (2011) Significant species difference in amide hydrolysis of GDC-0834, a novel potent and selective Bruton’s tyrosine kinase inhibitor. Drug Metab Dispos 39:1840–1849. doi:10.1124/dmd.111.040840

    Article  CAS  Google Scholar 

  33. Heffron TP, Salphati L, Alicke B et al (2012) The Design and identification of brain penetrant inhibitors of phosphoinositide 3-kinase α. J Med Chem 55:8007–8020. doi:10.1021/jm300867c

    Article  CAS  Google Scholar 

  34. Estrada AA, Liu X, Baker-Glenn C et al (2012) Discovery of highly potent, selective, and brain-penetrable leucine-rich repeat kinase 2 (LRRK2) small molecule inhibitors. J Med Chem 55:9416–9433. doi:10.1021/jm301020q

    Article  CAS  Google Scholar 

  35. Gobbi A, Lee M-L Aestel Open source software San Francisco. http://sourceforge.net/projects/aestel/. Accessed 16 Nov 2013

  36. OEChem Toolkit OpenEye Scientific Software, Sante Fe. www.eyesopen.com/oechem-tk. Accessed 16 Nov 2013

  37. Hawkins PCD, Skillman AG, Warren GL et al (2010) Conformer generation with OMEGA: algorithm and validation using high quality structures from the protein databank and Cambridge structural database. J Chem Inf Model 50:572–584. doi:10.1021/ci100031x

    Article  CAS  Google Scholar 

  38. Grapheme Toolkit OpenEye Scientific Software, Sante Fe. www.eyesopen.com/grapheme-tk. Accessed 16 Nov 2013

  39. Hao M-H, Haq O, Muegge I (2007) Torsion angle preference and energetics of small-molecule ligands bound to proteins. J Chem Inf Model 47:2242–2252. doi:10.1021/ci700189s

    Article  CAS  Google Scholar 

  40. Halgren TA (1998) Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J Comput Chem 17:490–519. doi:10.1002/(SICI)1096-987X(199604)17:5/6<490:AID-JCC1>3.0.CO;2-P

    Article  Google Scholar 

  41. Bissantz C, Kuhn B, Stahl M (2010) A medicinal chemist’s guide to molecular interactions. J Med Chem 53:5061–5084. doi:10.1021/jm100112j

    Article  CAS  Google Scholar 

  42. Jones G, Willett P, Glen RC et al (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748. doi:10.1006/jmbi.1996.0897

    Article  CAS  Google Scholar 

  43. Vortex Dotmatics, Bishops Stortford. www.dotmatics.com/products/vortex Accessed 16 Nov 2013

  44. Spotfire TIBCO Software, Boston. www.spotfire.tibco.com. Accessed 16 Nov 2013

  45. CMR Biobyte Corp, Claremont. www.biobyte.com. Accessed 16 Nov 2013

  46. Ertl P, Rohde B, Selzer P (2000) Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J Med Chem 43:3714–3717. doi:10.1021/jm000942e

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the late Dr. Warren DeLano for help with creating custom menus in PyMOL, and for implementing a webserver in PyMOL that enabled integration with external programs. We also thank Dr. Matthias Keil, Dr. Howard Feldman and their Chemical Computing Group colleagues for implementing features in MOE to enable integration with external software tools. Lastly, we thank Genentech colleagues for providing useful feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianwen A. Feng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 175 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, J.A., Aliagas, I., Bergeron, P. et al. An integrated suite of modeling tools that empower scientists in structure- and property-based drug design. J Comput Aided Mol Des 29, 511–523 (2015). https://doi.org/10.1007/s10822-015-9845-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-015-9845-4

Keywords

Navigation