Skip to main content
Log in

Ligand- and receptor-based docking with LiBELa

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Methodologies on molecular docking are constantly improving. The problem consists on finding an optimal interplay between the computational cost and a satisfactory physical description of ligand-receptor interaction. In pursuit of an advance in current methods we developed a mixed docking approach combining ligand- and receptor-based strategies in a docking engine, where tridimensional descriptors for shape and charge distribution of a reference ligand guide the initial placement of the docking molecule and an interaction energy-based global minimization follows. This hybrid docking was evaluated with soft-core and force field potentials taking into account ligand pose and scoring. Our approach was found to be competitive to a purely receptor-based dock resulting in improved logAUC values when evaluated with DUD and DUD-E. Furthermore, the smoothed potential as evaluated here, was not advantageous when ligand binding poses were compared to experimentally determined conformations. In conclusion we show that a combination of ligand- and receptor-based strategy docking with a force field energy model results in good reproduction of binding poses and enrichment of active molecules against decoys. This strategy is implemented in our tool, LiBELa, available to the scientific community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Leach AR (2001) Molecular modelling: principles and applications, 2nd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  2. Leach A, Shoichet B, Peishoff C (2006) J Med Chem 49(20):5851

    Article  CAS  Google Scholar 

  3. Zwanzig R (1954) J Chem Phys 22(8):1420

    Article  CAS  Google Scholar 

  4. Kollman P (1993) Chem Rev 93(7):2395

    Article  CAS  Google Scholar 

  5. Jorgensen W, Thomas L (2008) J Chem Theory Comput 4(6):869

    Article  CAS  Google Scholar 

  6. Kollman P, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case D, Cheatham T (2000) Acc Chem Res 33(12):889

    Article  CAS  Google Scholar 

  7. Kuhn B, Kollman P (2000) J Med Chem 43(20):3786

    Article  CAS  Google Scholar 

  8. Kuntz ID, Meng EC, Shoichet BK (1994) Acc Chem Res 27(5):117

  9. Doman T, McGovern S, Witherbee B, Kasten T, Kurumbail R, Stallings W, Connolly D, Shoichet B (2002) J Med Chem 45(11):2213

    Article  CAS  Google Scholar 

  10. Verkhivker G, Bouzida D, Gehlhaar D, Rejto P, Freer S, Rose P (2002) Curr Opin Struct Biol 12(2):197

    Article  CAS  Google Scholar 

  11. Wang J, Verkhivker GM (2003) Phys Rev Lett 90(18). doi:10.1103/PhysRevLett.90.188101

  12. Ferrari A, Wei B, Costantino L, Shoichet B (2004) J Med Chem 47(21):5076

    Article  CAS  Google Scholar 

  13. Hawkins P, Kelley B, Warren G (2014) J Chem Inf Model 54(5):1339

    Article  CAS  Google Scholar 

  14. McGann M (2012) J Comput Aided Mol Des 26(8):897

    Article  CAS  Google Scholar 

  15. VazdeLima LAC, Nascimento AS (2013) Eur J Med Chem 59:296

    Article  CAS  Google Scholar 

  16. Grant JA, Pickup BT (1995) J Phys Chem 99(11):3503

    Article  CAS  Google Scholar 

  17. Grant JA, Gallardo MA, Pickup BT (1996) J Comput Chem 17(14):1653

    Article  CAS  Google Scholar 

  18. Wang JM, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) J Comput Chem 25(9):1157

    Article  CAS  Google Scholar 

  19. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) J Cheminform 3:33

    Article  Google Scholar 

  20. Andreani R, Birgin EG, Martinez JM, Schuverdt ML (2008) Math Program 111(1–2):5

    Google Scholar 

  21. Birgin EG, Martinez JM (2008) Optim Methods Softw 23(2):177

    Article  Google Scholar 

  22. Andreani R, Birgin EG, Martinez JM, Schuverdt ML (2007) SIAM J Optim 18(4):1286

    Article  Google Scholar 

  23. Jones DR, Perttunen CD, Stuckman BE (1993) J Optim Theory Appl 79(1):157

    Article  Google Scholar 

  24. Jhonson SG (2015) The NLopt nonlinear-optimization package. http://abinitio.mit.edu/nlopt

  25. Meng EC, Shoichet BK, Kuntz ID (1992) J Comput Chem 13(4):505

    Article  CAS  Google Scholar 

  26. Luty BA, Wasserman ZR, Stouten PFW, Hodge CN, Zacharias M, McCammon JA (1995) J Comput Chem 16(4):454

    Article  CAS  Google Scholar 

  27. Pattabiraman N, Levitt M, Ferrin T, Langridge R (1985) J Comput Chem 6(5):432

    Article  CAS  Google Scholar 

  28. Mukherjee S, Balius T, Rizzo R (2010) J Chem Inf Model 50(11):1986

    Article  CAS  Google Scholar 

  29. Allen WJ, Balius TE, Mukherjee S, Brozell SR, Moustakas DT, Lang PT, Case DA, Kuntz ID, Rizzo RC (2015) J Comput Chem 36(15):1132

    Article  CAS  Google Scholar 

  30. Verdonk ML, Mortenson PN, Hall RJ, Hartshorn MJ, Murray CW (2008) J Chem Inf Model 48(11):2214

    Article  CAS  Google Scholar 

  31. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) J Comput Chem 25(13):1605

    Article  CAS  Google Scholar 

  32. Huang N, Shoichet BK, Irwin JJ (2006) J Med Chem 49(23):6789

    Article  CAS  Google Scholar 

  33. Mysinger M, Carchia M, Irwin J, Shoichet B (2012) J Med Chem 55(14):6582

    Article  CAS  Google Scholar 

  34. Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG (2012) J Chem Inf Model 52(7):1757

  35. Irwin JJ, Shoichet BK (2005) J Chem Inf Model 45:177

  36. Mysinger MM, Shoichet BK (2010) J Chem Inf Model 50(9):1561

    Article  CAS  Google Scholar 

  37. Brozell S, Mukherjee S, Balius T, Roe D, Case D, Rizzo R (2012) J Comput Aided Mol Des 26(6):749

    Article  CAS  Google Scholar 

  38. Shoichet BK, Leach AR, Kuntz ID (1999) Proteins Struct Funct Genet 34(1):4

    Article  CAS  Google Scholar 

  39. Good AC, Hodgkin EE, Richards WG (1992) J Comput Aided Mol Des 6(5):513

    Article  CAS  Google Scholar 

  40. Good AC, Hodgkin EE, Richards WG (1992) J Chem Inf Comput Sci 32(3):188

    Article  CAS  Google Scholar 

  41. Hodgkin EE, Richards WG (1987) Int J Quantum Chem 32:105

  42. Broccatelli F, Brown N (2014) J Chem Inf Model 54(6):1634

  43. Svensson F, Karlen A, Skold C (2012) J Chem Inf Model 52(1):225

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), and to the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the financial support through grants 2014/06565-2 and 485950/2013-8. HSM also thanks CNPq for her PhD stipend. We also thank Dr. Paul Hawkings and João Victor Cunha for the fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro S. Nascimento.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

Individual ROC curves for DUD. The fraction of decoys is shown on horizontal axis on log scale while the vertical axis brings the fraction of actives found in the energy-ranked docking result. The results for Amber FF model (green), Amber Smoothed energy model (cyan), DOCK6 Grid Score (black), Ligand-Based Similarity (blue) are compared in the same plot with what would be expected at random (red line) (TIFF 1157 kb)

Supplementary Figure 2

Continuing Supplementary Figure 1 (TIFF 3895 kb)

Supplementary Figure 3

Individual ROC curves for DUD-E. The fraction of decoys is shown on horizontal axis on log scale while the vertical axis brings the fraction of actives found in the energy-ranked docking result. The results for Amber FF model (green), Amber Smoothed energy model (cyan), DOCK6 Grid Score (black), Ligand-Based Similarity (blue) are compared in the same plot with what would be expected at random (red line) (TIFF 3602 kb)

Spreadsheet with individual RMSD values for each target in SB2012 self-docking experiment (ODS 261 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos Muniz, H., Nascimento, A.S. Ligand- and receptor-based docking with LiBELa. J Comput Aided Mol Des 29, 713–723 (2015). https://doi.org/10.1007/s10822-015-9856-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-015-9856-1

Keywords

Navigation