Skip to main content
Log in

Visualization of multi-property landscapes for compound selection and optimization

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Compound optimization generally requires considering multiple properties in concert and reaching a balance between them. Computationally, this process can be supported by multi-objective optimization methods that produce numerical solutions to an optimization task. Since a variety of comparable multi-property solutions are usually obtained further prioritization is required. However, the underlying multi-dimensional property spaces are typically complex and difficult to rationalize. Herein, an approach is introduced to visualize multi-property landscapes by adapting the concepts of star and parallel coordinates from computer graphics. The visualization method is designed to complement multi-objective compound optimization. We show that visualization makes it possible to further distinguish between numerically equivalent optimization solutions and helps to select drug-like compounds from multi-dimensional property spaces. The methodology is intuitive, applicable to a wide range of chemical optimization problems, and made freely available to the scientific community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Stumpfe D, Bajorath J (2012) Methods for SAR visualization. RSC Adv 2:369–378

    Article  CAS  Google Scholar 

  2. Wassermann AM, Wawer M, Bajorath J (2010) Activity landscape representations for structure-activity relationship analysis. J Med Chem 53:8209–8223

    Article  CAS  Google Scholar 

  3. Shanmugasundaram V, Maggiora GM (2001) Characterizing property and activity landscapes using an information-theoretic approach. In: Proceedings of 222nd American chemical society national meeting, division of chemical information, Chicago, IL, August 26–30, 2001; American Chemical Society: Washington, D.C., 2001; abstract no. 77

  4. Wawer M, Peltason L, Weskamp N, Teckentrup A, Bajorath J (2008) Structure-activity relationship anatomy by network-like similarity graphs and local structure-activity relationship indices. J Med Chem 51:6075–6084

    Article  CAS  Google Scholar 

  5. Wollenhaupt S, Baumann K (2014) inSARa: Intuitive and interactive SAR interpretation by reduced graphs and hierarchical MCS-based network navigation. J Chem Inf Model 54:1395–1409

    Article  Google Scholar 

  6. Agrafiotis DK, Shemanarev M, Connolly PJ, Farnum M, Lobanov VS (2007) SAR maps: a new SAR visualization technique for medicinal chemists. J Med Chem 50:5926–5937

    Article  CAS  Google Scholar 

  7. Wassermann AM, Bajorath J (2012) Directed R-group combination graph: a methodology to uncover structure-activity relationship patterns in a series of analogues. J Med Chem 55:1215–1226

    Article  CAS  Google Scholar 

  8. Peltason L, Weskamp N, Teckentrup A, Bajorath J (2009) Exploration of structure-activity relationship determinants in analogue series. J Med Chem 52:3212–3224

    Article  CAS  Google Scholar 

  9. Wawer M, Bajorath J (2010) Similarity-potency trees: a method to search for SAR information in compound data sets and derive SAR rules. J Chem Inf Model 50:1395–1409

    Article  CAS  Google Scholar 

  10. Peltason L, Iyer P, Bajorath J (2010) Rationalizing three-dimensional activity landscapes and the influence of molecular representations on landscape topology and the formation of activity cliffs. J Chem Inf Model 50:1021–1033

    Article  CAS  Google Scholar 

  11. Reutlinger M, Guba W, Martin RE, Alanine AI, Hoffmann T, Klenner A, Hiss JA, Schneider P, Schneider G (2011) Neighborhood-preserving visualization of adaptive structure-activity landscapes: application to drug discovery. Angew Chem Int Ed 50:11633–11636

    Article  CAS  Google Scholar 

  12. Zwierzyna M, Vogt M, Maggiora GM, Bajorath J (2015) Design and characterization of chemical space networks for different compound data sets. J Comput-Aided Mol Des 29:113–125

    Article  CAS  Google Scholar 

  13. Ertl P, Rohde B (2012) The molecule cloud-compact visualization of large collections of molecules. J Cheminf 4:12

    Article  CAS  Google Scholar 

  14. Awale M, van Deursen R, Reymond J-L (2010) MQN-mapplet: visualization of chemical space with interactive maps of DrugBank, ChEMBL, PubChem, GDB-11, and GDB-13. J Chem Inf Model 50:1395–1409

    Article  Google Scholar 

  15. Reymond J-L (2015) The chemical space project. Acc Chem Res 48:722–730

    Article  CAS  Google Scholar 

  16. Kireeva N, Baskin II, Gaspar HA, Horvath D, Marcou G, Varnek A (2012) Generative topographic mapping (GTM): universal tool for data visualization, structure-activity modeling, and dataset comparison. Mol Inf 3(4):301–312

    Article  Google Scholar 

  17. Wermuth CG (2008) The practice of medicinal chemistry, 3rd edn. Academic Press-Elsevier, Burlington, London

    Google Scholar 

  18. Gillet VJ, Khatib W, Willett P, Fleming P, Green DVS (2002) Combinatorial library design using multiobjective genetic algorithm. J Chem Inf Comput Sci 42:375–385

    Article  CAS  Google Scholar 

  19. Gillet VJ (2004) Applications of evolutionary computation in drug design. Struct Bond 110:133–152

    Article  CAS  Google Scholar 

  20. Nicolaou CA, Brown N, Pattichis CS (2007) Molecular optimization using computational multi-objective methods. Curr Opin Drug Discov Develop 10:316–324

    CAS  Google Scholar 

  21. Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, Light Y, McGlinchey S, Michalovich D, Al-Lazikani B, Overington JP (2012) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 40:D1100–D1107

    Article  CAS  Google Scholar 

  22. Law V, Knox C, Djoumbou Y, Jewison T, Guo AC, Liu Y, Maciejewski A, Arndt D, Wilson M, Neveu V, Tang A, Gabriel G, Ly C, Adamjee S, Dame ZT, Han B, Zhou Y, Wishart DS (2014) DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res 42:D1091–D1097

    Article  CAS  Google Scholar 

  23. OEChem TK (2012) OpenEye scientific software Inc, Santa Fe, NM, USA

  24. Molecular Operating Environment (2012) Chemical computing group Inc.: Montreal, Quebec, Canada

  25. Cook D, Buja A, Lee EK, Wickham H (2008) Grand tours, projection pursuit guided tours and manual controls. In: Chen C, Härdle W, Unwin A (eds) Handbook of data visualization. Springer, Heidelberg, pp 295–314

    Chapter  Google Scholar 

  26. Kandogan E (2000) Star coordinates: a multi-dimensional visualization technique with uniform treatment of dimensions. In: LBHT Proc IEEE information visualization symposium, pp 9–12

  27. Java universal network/graph framework. http://jung.sourcefourge.net/. Accessed May 1, 2014

  28. Inselberg A (1985) The plane with parallel coordinates. Visual Comput 1:69–91

    Article  Google Scholar 

  29. R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria, 2012

  30. de la Vega de León A, Kayastha S, Dimova D, Schultz T, Bajorath J (2015) ChEMBL20 data sets for multi-property landscape analysis. ZENODO. doi:10.5281/zenodo.21782

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Bajorath.

Additional information

Antonio de la Vega de León and Shilva Kayastha have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de la Vega de León, A., Kayastha, S., Dimova, D. et al. Visualization of multi-property landscapes for compound selection and optimization. J Comput Aided Mol Des 29, 695–705 (2015). https://doi.org/10.1007/s10822-015-9862-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-015-9862-3

Keywords