Skip to main content

Advertisement

Log in

Identification of novel inhibitors for Pim-1 kinase using pharmacophore modeling based on a novel method for selecting pharmacophore generation subsets

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Targeting Proviral integration-site of murine Moloney leukemia virus 1 kinase, hereafter called Pim-1 kinase, is a promising strategy for treating different kinds of human cancer. Headed for this a total list of 328 formerly reported Pim-1 kinase inhibitors has been explored and divided based on the pharmacophoric features of the most active molecules into 10 subsets projected to represent potential active binding manners accessible to ligands within the binding pocket of Pim-1 kinase. Discovery Studio 4.1 (DS 4.1) was employed to detect potential pharmacophoric active binding manners anticipated by Pim-1 Kinase inhibitors. The pharmacophoric models were then allowed to compete within Quantitative Structure Activity Relationship (QSAR) framework with other 2D descriptors. Accordingly Genetic algorithm and multiple linear regression investigation were engaged to find the finest QSAR equation that has the best predictive power r 2262  = 0.70, F = 119.14, r 2LOO  = 0.693, r 2PRESS against 66 external test inhibitors = 0.71 q2 = 0.55. Three different pharmacophores appeared in the successful QSAR equation this represents three different binding modes for inhibitors within the Pim-1 kinase binding pocket. Pharmacophoric models were later used to screen compounds within the National Cancer Institute database. Several low micromolar Pim-1 Kinase inhibitors were captured. The most potent hits show IC50 values of 0.77 and 1.03 µM. Also, upon analyzing the successful QSAR Equation we found that some polycyclic aromatic electron-rich structures namely 6-Chloro-2-methoxy-acridine can be considered as putative hits for Pim-1 kinase inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Nawijn MC, Alendar A, Berns A (2011) For better or for worse: the role of Pim oncogenes in tumorigenesis. Nat Rev Cancer 11(1):23–34

    Article  CAS  Google Scholar 

  2. Bachmann M, Kosan C, Xing PX, Montenarh M, Hoffmann I, Möröy T (2006) The oncogenic serine/threonine kinase Pim-1 directly phosphorylates and activates the G2/M specific phosphatase Cdc25C. Int J Biochem Cell Biol 38(3):430–443

    Article  CAS  Google Scholar 

  3. Sliman F, Blairvacq M, Durieu E, Meijer L, Rodrigo J, Desmaele D (2010) Identification and structure-activity relationship of 8-hydroxy-quinoline-7-carboxylic acid derivatives as inhibitors of Pim-1 kinase. Bioorg Med Chem Lett 20(9):2801–2805

    Article  CAS  Google Scholar 

  4. Bullock AN, Debreczeni JE, Fedorov OY, Nelson A, Marsden BD, Knapp S (2005) Structural basis of inhibitor specificity of the human protooncogene proviral insertion site in moloney murine leukemia virus (PIM-1) kinase. J Med Chem 48(24):7604–7614

    Article  CAS  Google Scholar 

  5. Xiang Y, Hirth B, Asmussen G, Biemann H-P, Bishop KA, Good A, Fitzgerald M, Gladysheva T, Jain A, Jancsics K, Liu J, Metz M, Papoulis A, Skerlj R, Stepp JD, Wei RR (2011) The discovery of novel benzofuran-2-carboxylic acids as potent Pim-1 inhibitors. Bioorg Med Chem Lett 21(10):3050–3056

    Article  CAS  Google Scholar 

  6. Warfel NA, Kraft AS (2015) PIM kinase (and Akt) biology and signaling in tumors. Parmacol Therapeutic 151:41–49

    Article  CAS  Google Scholar 

  7. Suchaud V, Gavara L, Saugues E, Nauton L, Thery V, Anizon F, Moreau P (2013) Identification of 1,6-dihydropyrazolo[4,3-c]carbazoles and 3,6-dihydropyrazolo[3,4-c]carbazoles as new Pim kinase inhibitors. Bioorg Med Chem 21:4102–4111

    Article  CAS  Google Scholar 

  8. Eichmann A, Yuan L, Bréant C, Alitalo K, Koskinen PJ (2000) Developmental expression of pim kinases suggests functions also outside of the hematopoietic system. Oncogene 19(9):1215–1224

    Article  CAS  Google Scholar 

  9. Backes A, Zech B, Felber B, Klebl B, Müller G (2008) Small-molecule inhibitors binding to protein kinases. Part I exceptions from the traditional pharmacophore approach of type I inhibition. Expert Opin Drug Discov 3(12):1409–1425

    Article  CAS  Google Scholar 

  10. Akue-Gedu R, Nauton L, Thery V, Bain J, Cohen P, Anizon F, Moreau P (2010) Synthesis Pim kinase inhibitory potencies and in vitro antiproliferative activities of diversely substituted pyrrolo[2,3-a]carbazoles. Bioorg Med Chem 18(18):6865–6873

    Article  CAS  Google Scholar 

  11. Akue-Gedu R, Rossignol E, Azzaro S, Knapp S, Filippakopoulos P, Bullock AN, Bain J, Cohen P, Prudhomme M, Anizon F, Moreau P (2009) Synthesis kinase inhibitory potencies and in vitro antiproliferative evaluation of new Pim kinase inhibitors. J Med Chem 52(20):6369–6381

    Article  CAS  Google Scholar 

  12. Cheney IW, Yan S, Appleby T, Walker H, Vo T, Yao N, Hamatake R, Hong Z, Wu JZ (2007) Identification and structure-activity relationships of substituted pyridones as inhibitors of Pim-1 kinase. Bioorg Med Chem Lett 17(6):1679–1683

    Article  CAS  Google Scholar 

  13. Nishiguchi GA, Atallah G, Bellamacina C, Burger MT, Ding Y, Feucht PH, Garcia PD, Han W, Klivansky L, Lindvall M (2011) Discovery of novel 3,5-disubstituted indole derivatives as potent inhibitors of Pim-1, Pim-2, and Pim-3 protein kinases. Bioorg Med Chem Lett 21:6366–6369

    Article  CAS  Google Scholar 

  14. Pastor J, Oyarzabal J, Saluste G, Alvarez RM, Rivero V, Ramos F, Cendon E, Blanco-Aparicio C, Ajenjo N, Cebria A, Albarran MI, Cebrian D, Corrionero A, Fominaya J, Montoya G, Mazzorana M (2012) Hit to lead evaluation of 1,2,3-triazolo[4,5-b]pyridines as PIM kinase inhibitors. Bioorg Med Chem Lett 22:1591–1597

    Article  CAS  Google Scholar 

  15. Pierce AC, Jacobs M, Stuver-Moody C (2008) Docking study yields four novel inhibitors of the protooncogene Pim-1 kinase. J Med Chem 51:1972–1975

    Article  CAS  Google Scholar 

  16. Pierre F, Stefan E, Nedellec AS, Chevrel MC, Regan CF, Siddiqui-Jain A, Macalino D, Streiner N, Drygin D, Haddach M, O’Brien SE, Anderes K, Ryckman DM (2011) 7-(4H-1,2,4-Triazol-3-yl)benzo[c][2,6]naphthyridines a novel class of Pim kinase inhibitors with potent cell antiproliferative activity. Bioorg Med Chem Lett 21:6687–6692

    Article  CAS  Google Scholar 

  17. Ren JX, Li LL, Zheng RL, Xie HZ, Cao ZX, Feng S, Pan YL, Chen X, Wei YQ, Yang SYJ (2011) Discovery of novel Pim-1 kinase inhibitors by a hierarchical multistage virtual screening approach based on SVM model, pharmacophore, and molecular docking. Chem Inf Model 51:1364–1375

    Article  CAS  Google Scholar 

  18. Tsuhako AL, Brown DS, Koltun ES, Aay N, Arcalas A, Chan V, Du H, Engst S, Franzini M, Galan A, Huang P, Johnston S, Kane B, Kim MH, Laird AD, Lin R, Mock L, Ngan I, Pack M, Stott G, Stout TJ, Yu P, Zaharia C, Zhang W, Zhou P, Nuss JM, Kearney PC, Xu W (2012) The design, synthesis, and biological evaluation of PIM kinase inhibitors. Bioorg Med Chem Lett 22:3732–3738

    Article  CAS  Google Scholar 

  19. Giraud F, Akué-Gédu R, Nauton L, Candelon N, Debiton E, Théry V, Anizon F, Moreau P (2012) Synthesis and biological activities of 4-substituted pyrrolo[2,3-a]carbazole Pim kinase inhibitors. Eur J Med Chem 56:225–236

    Article  CAS  Google Scholar 

  20. Pierre F, Regan CF, Chevrel M-C, Siddiqui-Jain A, Macalino D, Streiner N, Drygin D, Haddach M, O’Brien SE, Rice WG, Ryckman DM (2012) Novel potent dual inhibitors of CK2 and Pim kinases with antiproliferative activity against cancer cells. Bioorg Med Chem Lett 22(9):3327–3331

    Article  CAS  Google Scholar 

  21. Catalyst 4.11 User Guide (2005) Accelrys Software Inc. San Diego

  22. McCluskey A, Keller PA, Morgan J, Garner J (2003) Synthesis, molecular modeling and biological activity of methyl and thiomethyl substituted pyrimidines as corticotropin releasing hormone type 1 antagonists. Org Biomol Chem 1(19):3353–3361

    Article  CAS  Google Scholar 

  23. Discovery Studio 4.1 user Guide (2010) Biovia (Accelrys) Software Inc. San Diego

  24. Shahin R, AlQtaishat S, Taha M (2012) Elaborate ligand-based modeling reveal new submicromolar Rho kinase inhibitors. J Comput Aided Mol Des 26(2):249–266

    Article  CAS  Google Scholar 

  25. Li H, Sutter J, Hoffmann R (2000) In: Güner OF (ed) Pharmacophore perception, development, and use in drug design. International University Line, La Jolla, pp 173–189

    Google Scholar 

  26. Sutter J, Guner O, Hoffmann R, Li H, Waldman M (2000) In: Guner OF (ed) Pharmacophore perception, development, and use in drug design. International University Line, La Jolla, pp 501–511

    Google Scholar 

  27. Kurogi Y, Guner OF (2001) Pharmacophore modeling and three-dimensional database searching for drug design using catalyst. Curr Med Chem 8(9):1035–1055

    Article  CAS  Google Scholar 

  28. Bersuker I, Bahçeci S, Boggs J (2000) Pharmacophore perception, development and use in drug design. International University Line, La Jolla, pp 457–473

    Google Scholar 

  29. Abu Hammad AM, Taha MO (2009) Pharmacophore modeling, quantitative structure-activity relationship analysis, and shape-complemented in silico screening allow access to novel influenza neuraminidase inhibitors. J Chem Inf Model 49:978–996

    Article  CAS  Google Scholar 

  30. Abu Khalaf R, Abu Sheikha G, Bustanji Y, Taha MO (2010) Discovery of new cholesteryl ester transfer protein inhibitors via ligand-based pharmacophore modeling and QSAR analysis followed by synthetic exploration. Eur J Med Chem 45(4):1598–1617

    Article  CAS  Google Scholar 

  31. Abuhamdah S, Habash M, Taha MO (2013) Elaborate ligand-based modeling coupled with QSAR analysis and in silico screening reveal new potent acetylcholinesterase inhibitors. J Comput-Aided Mol Des 27(12):1075–1092

    Article  CAS  Google Scholar 

  32. Al-Masri IM, Mohammad MK, Taha MO (2008) Discovery of DPP IV inhibitors by pharmacophore modeling and QSAR analysis followed by in silico screening. ChemMedChem 3(11):1763–1779

    Article  CAS  Google Scholar 

  33. Taha MO, Bustanji Y, Al-Ghussein MAS, Mohammad M, Zalloum H, Al-Masri IM, Atallah N (2008) Pharmacophore modeling, quantitative structure-activity relationship analysis, and in silico screening reveal potent glycogen synthase kinase-3β inhibitory activities for cimetidine hydroxychloroquine, and gemifloxacin. J Med Chem 51(7):2062–2077

    Article  CAS  Google Scholar 

  34. Taha MO, Qandil AM, Al-Haraznah T, Khalaf RA, Zalloum H, Al-Bakri AG (2011) Discovery of new antifungal leads via pharmacophore modeling and QSAR analysis of fungal N-myristoyl transferase inhibitors followed by in silico screening. Chem Biol Drug Des 78(3):391–407

    Article  CAS  Google Scholar 

  35. Taha MO, Qandil AM, Zaki DD, AlDamen MA (2005) Ligand-based assessment of factor Xa binding site flexibility via elaborate pharmacophore exploration and genetic algorithm-based QSAR modeling. Eur J Med Chem 40(7):701–727

    Article  CAS  Google Scholar 

  36. Poptodorov K, Luu T, Langer T, Hoffmann R (2006) Methods and principles in medicinal chemistry. In: Hoffmann RD (ed) Pharmacophores and pharmacophores searches, vol 2. Wiley, Weinheim, pp 17–47

    Google Scholar 

  37. Zheng W, Tropsha A (2000) Novel variable selection quantitative structure–property relationship approach based on the k-nearest-neighbor principle. J Chem Inf Comput Sci 40:185–194

    Article  CAS  Google Scholar 

  38. Fischer R (1966) The principle of experimentation illustrated by a psycho-physical, chapter II, 8th edn. ExpeHafner Publishing Co., Hafner Publishing, New York

    Google Scholar 

  39. Shahin R, Taha MO (2012) Elaborate ligand-based modeling and subsequent synthetic exploration unveil new nanomolar Ca2+/calmodulin-dependent protein kinase II inhibitory leads. Bioorg Med Chem Lett 20(1):377–400

    Article  CAS  Google Scholar 

  40. Taha MO, Atallah N, Al-Bakri AG, Paradis-Bleau C, Zalloum H, Younis KS, Levesque RC (2008) Discovery of new MurF inhibitors via pharmacophore modeling and QSAR analysis followed by in silico screening. Bioorg Med Chem 16(3):1218–1235

    Article  CAS  Google Scholar 

  41. Taha MO, Bustanji Y, Al-Bakri AG, Yousef AM, Zalloum WA, Al-Masri IM, Atallah N (2007) Discovery of new potent human protein tyrosine phosphatase inhibitors via pharmacophore and QSAR analysis followed by in silico screening. J Mol Graph Model 25(6):870–884

    Article  CAS  Google Scholar 

  42. Verdonk ML, Berdini V, Hartshorn MJ, Mooij WT, Murray CW, Taylor RD, Watson P (2004) Virtual screening using protein-ligand docking: avoiding artificial enrichment. J Chem Inf Comput Sci 44(3):793–806

    Article  CAS  Google Scholar 

  43. Kirchmair J, Markt P, Distinto S, Wolber G, Langer T (2008) Evaluation of the performance of 3D virtual screening protocols: RMSD comparisons, enrichment assessments, and decoy selection–What can we learn from earlier mistakes? J Comput Aided Mol Des 22(3–4):213–228

    Article  CAS  Google Scholar 

  44. Irwin JJ, Shoichet BK (2005) ZINC—a free database of commercially available compounds for virtual screening. J Chem Inf Model 45(1):177–182

    Article  CAS  Google Scholar 

  45. Jacobsson M, Liden P, Fau-Stjernschantz E, Stjernschantz E, Fau-Bostrom H, Bostrom H, Fau-Norinder U, Norinder U (2003) J Med Chem 46:5781

    Article  CAS  Google Scholar 

  46. Kirchmair J, Markt P, Distinto S, Schuster D, Spitzer GM, Liedl KR, Langer T, Wolber G (2008) The Protein Data Bank (PDB), its related services and software tools as key components for in silico guided drug discovery. J Med Chem. 51(22):7021–7040

    Article  CAS  Google Scholar 

  47. Triballeau N, Acher F, Brabet I, Pin JP, Bertrand HOJ (2005) Virtual screening workflow development guided by the “receiver operating characteristic” curve approach. Application to high-throughput docking on metabotropic glutamate receptor subtype 4. Med Chem 48:2534

    Article  CAS  Google Scholar 

  48. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46(1–3):3–26

    Article  CAS  Google Scholar 

  49. Veber DF, Johnson S, Cheng HY, Smith BR, Ward KW, Kopple KD (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45(12):2615–2623

    Article  CAS  Google Scholar 

  50. Pim I kinase Assay Kit (Cat# CY-1167) (2009) CycLex, M., Ed. Ina Nagano, Japan

  51. Güner O, Clement O, Kurogi Y (2004) Pharmacophore modeling and three dimensional database searching for drug design using catalyst recent advances. Curr Med Chem 11(22):2991–3005

    Article  Google Scholar 

  52. Ramsey LF, Schafer WD (1997) The statistical sleuth, 1st edn. Wadsworth Publishing Company, Belmont

    Google Scholar 

  53. Fukui K (1982) The role of frontier orbitals in chemical reactions. Science 218(4574):747–754

    Article  CAS  Google Scholar 

  54. Kikuchi O (1987) Systematic QSAR procedures with quantum chemical descriptors. Quant Struct Act Relatsh 6(4):179–184. doi:10.1002/qsar.19870060406

    Article  CAS  Google Scholar 

  55. Prasad YR, Kumar KR, Smiles J, Babu A (2008) QSAR studies on chalcone derivatives as antibacterial agents against Bacillus pumilis. Arkivoc 11:266–276. doi:10.3998/ark.5550190.0009.b26

    Google Scholar 

  56. Bemis GW, Murcko MA (1996) The properties of known drugs 1. Molecular frameworks. J Med Chem 39:2887

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was sponsored by the Deanship of Scientific Research in Zarqa University. The author thanks the Faculty of pharmacy and Prof. Nancy Hakooz for their generous help and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rand Shahin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 5503 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahin, R., Swellmeen, L., Shaheen, O. et al. Identification of novel inhibitors for Pim-1 kinase using pharmacophore modeling based on a novel method for selecting pharmacophore generation subsets. J Comput Aided Mol Des 30, 39–68 (2016). https://doi.org/10.1007/s10822-015-9887-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-015-9887-7

Keywords

Navigation