Skip to main content

Advertisement

Log in

Quantum probability ranking principle for ligand-based virtual screening

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Chemical libraries contain thousands of compounds that need screening, which increases the need for computational methods that can rank or prioritize compounds. The tools of virtual screening are widely exploited to enhance the cost effectiveness of lead drug discovery programs by ranking chemical compounds databases in decreasing probability of biological activity based upon probability ranking principle (PRP). In this paper, we developed a novel ranking approach for molecular compounds inspired by quantum mechanics, called quantum probability ranking principle (QPRP). The QPRP ranking criteria would make an attempt to draw an analogy between the physical experiment and molecular structure ranking process for 2D fingerprints in ligand based virtual screening (LBVS). The development of QPRP criteria in LBVS has employed the concepts of quantum at three different levels, firstly at representation level, this model makes an effort to develop a new framework of molecular representation by connecting the molecular compounds with mathematical quantum space. Secondly, estimate the similarity between chemical libraries and references based on quantum-based similarity searching method. Finally, rank the molecules using QPRP approach. Simulated virtual screening experiments with MDL drug data report (MDDR) data sets showed that QPRP outperformed the classical ranking principle (PRP) for molecular chemical compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Shekhar C (2008) In silico pharmacology: computer-aided methods could transform drug development. Chem Biol 15(5):413–414. doi:10.1016/j.chembiol.2008.05.001

    Article  CAS  Google Scholar 

  2. Bajorath J (2004) Chemoinformatics: concepts, methods, and tools for drug discovery, vol 275. Springer Science & Business Media, New York

  3. Jorgensen WL (2004) The many roles of computation in drug discovery. Science 303(5665):1813–1818

    Article  CAS  Google Scholar 

  4. Agarwal S, Dugar D, Sengupta S (2010) Ranking chemical structures for drug discovery: a new machine learning approach. J Chem Inf Model 50(5):716–731

    Article  CAS  Google Scholar 

  5. Rathke F, Hansen K, Brefeld U, Müller K-R (2010) StructRank: a new approach for ligand-based virtual screening. J Chem Inf Model 51(1):83–92

    Article  Google Scholar 

  6. Chen H, Pan Z, Li L (2014) Learning performance of coefficient-based regularized ranking. Neurocomputing 133(0):54–62. doi:10.1016/j.neucom.2013.11.032

    Article  Google Scholar 

  7. Lavecchia A (2015) Machine-learning approaches in drug discovery: methods and applications. Drug Discovery Today 20(3):318–331. doi:10.1016/j.drudis.2014.10.012

    Article  Google Scholar 

  8. Chen H, Peng J, Zhou Y, Li L, Pan Z (2014) Extreme learning machine for ranking: generalization analysis and applications. Neural Netw 53:119–126

    Article  Google Scholar 

  9. Abdo A, Saeed F, Hamza H, Ahmed A, Salim N (2012) Ligand expansion in ligand-based virtual screening using relevance feedback. J Comput Aided Mol Des 26(3):279–287. doi:10.1007/s10822-012-9543-4

    Article  CAS  Google Scholar 

  10. Willett P (2013) Combination of similarity rankings using data fusion. J Chem Inf Model 53. doi:10.1021/ci300547g

  11. Seal A, Yogeeswari P, Sriram D, Wild DJ, Consortium O (2013) Enhanced ranking of PknB Inhibitors using data fusion methods. J Cheminform 5(1):1–11

    Article  Google Scholar 

  12. Wassermann AM, Geppert H, Bajorath Jr (2009) Searching for target-selective compounds using different combinations of multiclass support vector machine ranking methods, kernel functions, and fingerprint descriptors. J Chem Inf Model 49(3):582–592

    Article  CAS  Google Scholar 

  13. Hasegawa K, Funatsu K (2010) Non-linear modeling and chemical interpretation with aid of support vector machine and regression. Curr Comp Aided Drug Design 6(1):24–36

    Article  CAS  Google Scholar 

  14. Li L, Wang B, Meroueh SO (2011) Support vector regression scoring of receptor–ligand complexes for rank-ordering and virtual screening of chemical libraries. J Chem Inf Model 51(9):2132–2138. doi:10.1021/ci200078f

    Article  CAS  Google Scholar 

  15. MDL Drug Data Report (MDDR) Accelrys Inc. http://www.accelrys.com/. Accessed 24 June 2015

  16. Pipeline Pilot Software (2008) SciTegic Accelrys Inc, http://www.accelrys.com/. San Diego Accelrys Inc

  17. Zuccon G, Azzopardi L, van Rijsbergen K (2009) The quantum probability ranking principle for information retrieval. In: Azzopardi L, Kazai G, Robertson S et al (eds) Advances in information retrieval theory, vol 5766. Lecture notes in computer science, Springer, Berlin, pp 232–240. doi:10.1007/978-3-642-04417-5_21

    Chapter  Google Scholar 

  18. Zuccon G, Azzopardi L (2010) Using the quantum probability ranking principle to rank interdependent documents. In: Gurrin C, He Y, Kazai G et al (eds) Advances in information retrieval, vol 5993. Lecture notes in computer science, Springer, Berlin, pp 357–369. doi:10.1007/978-3-642-12275-0_32

    Google Scholar 

  19. Melucci M (2011) Can information retrieval systems be improved using quantum probability? In: Advances in information retrieval theory. Springer, Berlin, pp 139–150

    Google Scholar 

  20. Willett P (2000) Textual and chemical information processing: different domains but similar algorithms. Inform Res 5:2

    Google Scholar 

  21. Al-Dabbagh M, Salim N, Himmat M, Ahmed A, Saeed F (2015) A quantum-based similarity method in virtual screening. Molecules 20(10):18107

    Article  CAS  Google Scholar 

  22. Robertson SE (1977) The probability ranking principle in IR. J Doc 33(4):294–304

    Article  Google Scholar 

  23. Kolmogorov AN (1950) Foundations of the theory of probability. Chelsea Publishing Company, New York

    Google Scholar 

  24. Feynman RP (1970) The concept of probability in quantum mechanics. In: Proceedings of the second berkeley symposium on mathematical statistics and probability, Berkeley, California, 1951. University of California Press, Oakland, pp 533–541

  25. Busemeyer JR, Bruza PD (2012) Quantum models of cognition and decision. Cambridge University Press, Cambridge

    Book  Google Scholar 

  26. Zuccon G, Azzopardi L, Hauff C, Rijsbergen CJKv (2010) Estimating interference in the QPRP for subtopic retrieval. Paper presented at the proceedings of the 33rd international ACM SIGIR conference on research and development in information retrieval. Geneva, Switzerland

  27. Ellis D, Furner-Hines J, Willett P (1993) Measuring the degree of similarity between objects in text retrieval systems. Perspectives in information. Management 3(2):128–149

    Google Scholar 

  28. Bajusz D, Rácz A, Héberger K (2015) Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations?. J Cheminform 7(1):1–13. doi:10.1186/s13321-015-0069-3

    Article  CAS  Google Scholar 

  29. Abdo A, Chen B, Mueller C, Salim N, Willett P (2010) Ligand-based virtual screening using bayesian networks. J Chem Inf Model 50(6):1012–1020. doi:10.1021/ci100090p

    Article  CAS  Google Scholar 

  30. Chen B, Mueller C, Willett P (2009) Evaluation of a Bayesian inference network for ligand-based virtual screening. J Cheminform 1(1):1–10

    Article  Google Scholar 

  31. Melucci M (2015) Quantum mechanics and information retrieval. In: Introduction to information retrieval and quantum mechanics. Springer, Berlin pp 101–188

    Chapter  Google Scholar 

  32. Rijsbergen CJv (2004) The geometry of information retrieval. Cambridge University Press, Cambridge

    Book  Google Scholar 

  33. Dirac PAM (1981) The principles of quantum mechanics, vol 27. Oxford University Press, Oxford

    Google Scholar 

  34. Himmat M, Salim N, Al-Dabbagh MM, Saeed F, Ahmed A (2016) Adapting document similarity measures for ligand-based virtual screening. Molecules 21(4):476

    Article  Google Scholar 

  35. Muegge I, Mukherjee P (2016) An overview of molecular fingerprint similarity search in virtual screening. Expert Opin Drug Discov 11(2):137–148.

    Article  CAS  Google Scholar 

  36. Todeschini R, Consonni V, Xiang H, Holliday J, Buscema M, Willett P (2012) Similarity coefficients for binary chemoinformatics data: overview and extended comparison using simulated and real data sets. J Chem Inf Model 52(11):2884–2901. doi:10.1021/ci300261r

    Article  CAS  Google Scholar 

  37. Sinha U, Couteau C, Jennewein T, Laflamme R, Weihs G (2010) Ruling out multi-order interference in quantum mechanics. Science 329(5990):418–421

    Article  CAS  Google Scholar 

  38. Saeed F, Salim N, Abdo A (2014) Combining multiple clusterings of chemical structures using cluster-based similarity partitioning algorithm. Int J Comput Biol Drug Design 7(1):31–44

    Article  CAS  Google Scholar 

  39. Ahmed A, Saeed F, Salim N, Abdo A (2014) Condorcet and borda count fusion method for ligand-based virtual screening. J Cheminform 6(1):19

    Article  Google Scholar 

  40. Siegel S, Castellan NJJR (1988) Nonparametric statistics for the behavioral sciences. McGraw-HiU Book Company, New York

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Ministry of Higher Education (MOHE) and the Research Management Centre (RMC) at the Universiti Teknologi Malaysia (UTM) under the Fundamental Research Grant Scheme (FRGS) Category (VOT R.J130000.7828.4F741). We also would like to thank MIS-MOHE for sponsoring the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Mumtaz Al-Dabbagh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Dabbagh, M.M., Salim, N., Himmat, M. et al. Quantum probability ranking principle for ligand-based virtual screening. J Comput Aided Mol Des 31, 365–378 (2017). https://doi.org/10.1007/s10822-016-0003-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-016-0003-4

Keywords

Navigation