Skip to main content
Log in

The analysis of the market success of FDA approvals by probing top 100 bestselling drugs

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Target-oriented drug discovery is the main research paradigm of contemporary drug discovery. In target-oriented approaches, we attempt to maximize in vitro drug potency by finding the optimal fit to the target. This can result in a higher molecular complexity, in particular, the higher molecular weight (MW) of the drugs. However, a comparison of the successful developments of pharmaceuticals with the general trends that can be observed in medicinal chemistry resulted in the conclusion that the so-called molecular obesity is an important reason for the attrition rate of drugs. When analyzing the list of top 100 drug bestsellers versus all of the FDA approvals, we discovered that on average lower-complexity (MW, ADMET score) drugs are winners of the top 100 list in terms of numbers but that, especially, up to some optimal MW value, a higher molecular complexity can pay off with higher incomes. This indicates that slim drugs are doing better but that fat drugs are bigger fishes to catch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Scannell JW, Blanckley A, Boldon H, Warrington B (2012) Diagnosing the decline in pharmaceutical R&D efficiency. Nat Rev Drug Discov 11:191–200. doi:10.1038/nrd3681

    Article  CAS  Google Scholar 

  2. Lindborg SR, Persinger CC, Sashegyi A, Mallinckrodt C, Ruberg SJ (2014) Statistical refocusing in the design of Phase II trials offers promise of increased R&D productivity. Nat Rev Drug Discov 13:638–640. doi:10.1038/nrd3681-c1

    Article  CAS  Google Scholar 

  3. Pammolli F, Magazzini L, Riccaboni M (2011) The productivity crisis in pharmaceutical R&D. Nat Rev Drug Discov 10:428–438. doi:10.1038/nrd3405

    Article  CAS  Google Scholar 

  4. Lendrem D, Senn SJ, Lendrem BC, Isaacs JD (2015) R&D productivity rides again? Pharm Stat 14:1–3. doi:10.1002/pst.1653

    Article  Google Scholar 

  5. Polanski J, Bogocz J, Tkocz A (2015) Top 100 bestselling drugs represent an arena struggling for new FDA approvals: drug age as an efficiency indicator. Drug Discov Today 20:1300–1304. doi:10.1016/j.drudis.2015.06.015

    Article  Google Scholar 

  6. Swinney DC, Anthony J (2011) How were new medicines discovered? Nat Rev Drug Discov 10:507–519. doi:10.1038/nrd3480

    Article  CAS  Google Scholar 

  7. Walters WP, Green J, Weiss JR, Murcko MA (2011) What do medicinal chemists actually make? a 50-year retrospective. J Med Chem 54:6405–6416. doi:10.1021/jm200504p

    Article  CAS  Google Scholar 

  8. Hann MM, Keseru GM (2012) Finding the sweet spot: the role of nature and nurture in medicinal chemistry. Nat Rev Drug Discov 11:355–365. doi:10.1038/nrd3701

    Article  CAS  Google Scholar 

  9. Hann MM (2011) Molecular obesity, potency and other addictions in drug discovery. Medchemcomm 2:349–355. doi:10.1039/c1md00017a

    Article  CAS  Google Scholar 

  10. Lipinski C, Hopkins A (2004) Navigating chemical space for biology and medicine. Nature 432:855–861. doi:10.1038/nature03193

    Article  CAS  Google Scholar 

  11. Gleeson MP, Hersey A, Montanari D, Overington J (2011) Probing the links between in vitro potency, ADMET and physicochemical parameters. Nat Rev Drug Discov 10:197–208. doi:10.1038/nrd3367

    Article  CAS  Google Scholar 

  12. Ferenczy GG, Keserű GM (2013) How are fragments optimized? a retrospective analysis of 145 fragment optimizations. J Med Chem 56:2478–2486. doi:10.1021/jm301851v

    Article  CAS  Google Scholar 

  13. Leeson PD, Springthorpe B (2007) The influence of drug-like concepts on decision-making in medicinal chemistry. Nat Rev Drug Discov 6:881–890. doi:10.1038/nrd2445

    Article  CAS  Google Scholar 

  14. Kenny PW, Montanari CA (2013) Inflation of correlation in the pursuit of drug-likeness. J Comput Aided Mol Des 27:1–13. doi:10.1007/s10822-012-9631-5

    Article  CAS  Google Scholar 

  15. Kalliokoski T, Kramer C, Vulpetti A, Gedeck P (2013) Comparability of mixed IC50 data: a statistical analysis. PLoS One 8(4):e61007. doi:10.1371/journal.pone.0061007

    Article  CAS  Google Scholar 

  16. Zartler ER, Shapiro MJ (2005) Fragonomics: fragment-based drug discovery. Curr Opin Chem Biol 9:366–370. doi:10.1016/j.cbpa.2005.05.002

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Anonymous reviewers were kindly acknowledged for a valuable remarks allowing for a substantial improvement of the original text. JP kindly thank the financial support of NCBR Grants ORGANOMET No: PBS2/A5/40/2014 and TANGO1/266384/NCBR/2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslaw Polanski.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 144 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polanski, J., Bogocz, J. & Tkocz, A. The analysis of the market success of FDA approvals by probing top 100 bestselling drugs. J Comput Aided Mol Des 30, 381–389 (2016). https://doi.org/10.1007/s10822-016-9912-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-016-9912-5

Keywords