Skip to main content

Advertisement

Log in

Extended solvent-contact model approach to blind SAMPL5 prediction challenge for the distribution coefficients of drug-like molecules

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The performance of the extended solvent-contact model has been addressed in the SAMPL5 blind prediction challenge for distribution coefficient (LogD) of drug-like molecules with respect to the cyclohexane/water partitioning system. All the atomic parameters defined for 41 atom types in the solvation free energy function were optimized by operating a standard genetic algorithm with respect to water and cyclohexane solvents. In the parameterizations for cyclohexane, the experimental solvation free energy (ΔG sol ) data of 15 molecules for 1-octanol were combined with those of 77 molecules for cyclohexane to construct a training set because ΔG sol values of the former were unavailable for cyclohexane in publicly accessible databases. Using this hybrid training set, we established the LogD prediction model with the correlation coefficient (R), average error (AE), and root mean square error (RMSE) of 0.55, 1.53, and 3.03, respectively, for the comparison of experimental and computational results for 53 SAMPL5 molecules. The modest accuracy in LogD prediction could be attributed to the incomplete optimization of atomic solvation parameters for cyclohexane. With respect to 31 SAMPL5 molecules containing the atom types for which experimental reference data for ΔG sol were available for both water and cyclohexane, the accuracy in LogD prediction increased remarkably with the R, AE, and RMSE values of 0.82, 0.89, and 1.60, respectively. This significant enhancement in performance stemmed from the better optimization of atomic solvation parameters by limiting the element of training set to the molecules with experimental ΔG sol data for cyclohexane. Due to the simplicity in model building and to low computational cost for parameterizations, the extended solvent-contact model is anticipated to serve as a valuable computational tool for LogD prediction upon the enrichment of experimental ΔG sol data for organic solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25

    Article  CAS  Google Scholar 

  2. Hermens JLM, de Gruijin JHM, Brooke DN (2013) The octanol–water partition coefficient: strengths and limitations. Environ Toxicol Chem 32:732–733

    Article  CAS  Google Scholar 

  3. van de Waterbeemd H, Camenisch G, Folkers G, Chretien JR, Raevsky OA (1998) Estimation of blood-brain barrier crossing of drugs using molecular size and shape, and H-bonding descriptors. J Drug Target 6:151–165

    Article  Google Scholar 

  4. van de Waterbeemd H, Gifford E (2003) ADMET in silico modelling: towards prediction paradise? Nat Rev Drug Discov 2:192–204

    Article  Google Scholar 

  5. Dearden JC (2007) In silico prediction of ADMET properties: how far have we come? Expert Opin Drug Metab Toxicol 3:635–639

    Article  CAS  Google Scholar 

  6. Kenny JR (2013) Predictive DMPK: in silico ADME predictions in drug discovery. Mol Pharm 10:1151–1152

    Article  CAS  Google Scholar 

  7. Smith DA (2013) Evolution of ADME science: where else can modeling and simulation contribute? Mol Pharm 10:1162–1170

    Article  CAS  Google Scholar 

  8. Roda A, Minutello A, Angellotti MA, Fini A (1990) Bile acid structure-activity relationship: evaluation of bile acid lipophilicity using 1-octanol/water partition coefficient and reverse phase HPLC. J Lipid Res 31:1433–1443

    CAS  Google Scholar 

  9. Leung SSF, Sindhikara D, Jacobson MP (2016) Simple predictive models of passive membrane permeability incorporating size-dependent membrane-water partition. J Chem Inf Model 56:924–929

    Article  CAS  Google Scholar 

  10. Jing P, Rodgers PJ, Amemiya S (2009) High lipophilicity of perfluoroalkyl carboxylate and sulfonate: implications for their membrane permeability. J Am Chem Soc 131:2290–2296

    Article  CAS  Google Scholar 

  11. Schneider N, Lange G, Hindle S, Klein R, Rarey MA (2013) A consistent description of hydrogen bond and dehydration energies in protein-ligand complexes: methods behind the HYDE scoring function. J Comput Aided Mol Des 27:15–29

    Article  CAS  Google Scholar 

  12. Ghose AK, Crippen GM (1987) Atomic physicochemical parameters for three-dimensional-structuredirected quantitative structure-activity relationships. 2. Modeling dispersive and hydrophobic interactions. J Chem Inf Comput Sci 27:21–35

    Article  CAS  Google Scholar 

  13. Rekker RF, Kort HMD (1979) Hydrophobic fragmental constant—extension to a 1000 data point set. Eur J Med Chem 14:479–488

    CAS  Google Scholar 

  14. Yaffe D, Cohen Y, Espinosa G, Arenas A, Giralt F (2002) Fuzzy ARTMAP and back-propagation neural networks based quantitative structure-property relationships (QSPRs) for octanol-water partition coefficient of organic compounds. J Chem Inf Comput Sci 42:162–183

    Article  CAS  Google Scholar 

  15. Hou TJ, Xu XJ (2003) ADME evaluation in drug discovery. 2. Prediction of partition coefficient by atom-additive approach based on atom-weighted solvent accessible surface areas. J Chem Inf Comput Sci 43:1058–1067

    Article  CAS  Google Scholar 

  16. Wegner JK, Zell A (2003) Prediction of aqueous solubility and partition coefficient optimized by a genetic algorithm based descriptor selection method. J Chem Inf Comput Sci 43:1077–1084

    Article  CAS  Google Scholar 

  17. Souza ES, Zaramello L, Kuhnen CA, Junkes BS, Yunes RA, Heinzen VEF (2011) Estimating the octanol/water partition coefficient for aliphatic organic compounds using semi-empirical electrotopological index. Int J Mol Sci 12:7250–7264

    Article  CAS  Google Scholar 

  18. Toropov AA, Toropova AP, Raska I, Benfenati E (2010) QSPR modeling of octanol/water partition coefficient of antineoplastic agents by balance of correlations. Eur J Med Chem 45:1639–1647

    Article  CAS  Google Scholar 

  19. Daina A, Michielin O, Zoete V (2014) iLOGP: a simple, robust, and efficient description of n-octanol/water partition coefficient for drug design using the GB/SA approach. J Chem Inf Model 54:3284–3301

    Article  CAS  Google Scholar 

  20. Kim T, Park H (2015) Computational prediction of octanol–water partition coefficient based on the extended solvent-contact model. J Mol Graph Model 60:108–117

    Article  CAS  Google Scholar 

  21. Huang W, Blinov N, Kovalenko A (2015) Octanol−water partition coefficient from 3D-RISM-KH molecular theory of solvation with partial molar volume correction. J Phys Chem B 119:5588–5597

    Article  CAS  Google Scholar 

  22. Banks WA, Kastin A (1985) Peptides and the blood-brain barrier: lipophilicity as a predictor of permeability. Brain Res Bull 15:287–292

    Article  CAS  Google Scholar 

  23. Kellogg GE, Burnett JC, Abraham DJ (2001) Very empirical treatment of solvation and entropy: a force field derived from LogPo/w. J Comput-Aided Mol Des 15:381–393

    Article  CAS  Google Scholar 

  24. Delaney JS (2005) Predicting aqueous solubility from structure. Drug Discov Today 10:289–295

    Article  CAS  Google Scholar 

  25. Mayer PT, Anderson BD (2002) Transport across 1, 9-decadiene precisely mimics the chemical selectivity of the barrier domain in egg lecithin bilayers. J Pharm Sci 91:640–646

    Article  CAS  Google Scholar 

  26. Toulmin A, Wood JM, Kenny PW (2008) Toward prediction of alkane/water partition coefficients. J Med Chem 51:3720–3730

    Article  CAS  Google Scholar 

  27. Young RJ, Green DVS, Luscombe CN, Hill AP (2011) Getting physical in drug discovery II: the impact of chromatographic hydrophobicity measurements and aromaticity. Drug Discov Today 16:822–830

    Article  CAS  Google Scholar 

  28. Abraham MH, Chadha HS, Whiting GS, Mitchell RC (1994) Hydrogen bonding. 32. An analysis of water-octanol and water-alkane partitioning and the & ∆log P parameter of Seiler. J Pharm Sci 83:1085–1100

    Article  CAS  Google Scholar 

  29. Saunders RA, Platts JA (2004) Scaled polar surface area descriptors: development and application to three sets of partition coefficients. New J Chem 28:166–172

    Article  CAS  Google Scholar 

  30. Zerara M, Brickmann J, Kretschmer R, Exner TE (2008) Parameterization of an empirical model for the prediction of n-octanol, alkane and cyclohexane/water as well as brain/blood partition coefficients. J Comput-Aided Mol Des 23:105–111

    Article  Google Scholar 

  31. Kenny PW, Montanari CA, Prokopczyk IM (2013) ClogPalk: a method for predicting alkane/water partition coefficient. J Comput Aided Mol Des 27:389–402

    Article  CAS  Google Scholar 

  32. Lamarche O, Platts JA, Hersey A (2004) Theoretical prediction of partition coefficients via molecular electrostatic and electronic properties. J Chem Inf Comput Sci 44:848–855

    Article  CAS  Google Scholar 

  33. Caron G, Ermondi G (2005) Calculating virtual log P in the alkane/water system logPalk N and its derived parameters ∆log Poct_alk N and log Dalk pH. J Med Chem 48:3269–3279

    Article  CAS  Google Scholar 

  34. Leung SSF, Sindhikara D, Jacobson MP (2016) Simple predictive models of passive membrane permeability incorporating size-dependent membrane-water partition. J Chem Inf Model 56:924–929

    Article  CAS  Google Scholar 

  35. Park H (2014) Extended solvent-contact model approach to SAMPL4 blind prediction challenge for hydration free energies. J Comput-Aided Mol Des 28:175–186

    Article  CAS  Google Scholar 

  36. Chung KC, Park H (2015) Accuracy enhancement in the estimation of molecular hydration free energies by implementing the intramolecular hydrogen bond effects. J Cheminform 7:57

    Article  Google Scholar 

  37. Mączyński A, Wiśniewska-Gocłowska B, Góral M (2004) Recommended liquid–liquid equilibrium data. Part 1. Binary alkane–water systems. J Phys Chem Ref Data 33:549–577

    Article  Google Scholar 

  38. Escher BI, Schwarzenbach RP, Westall JC (2000) Evaluation of liposome−water partitioning of organic acids and bases. 1. Development of a sorption model. Environ Sci Technol 34:3954–3961

    Article  CAS  Google Scholar 

  39. Marenich AV, Kelly CP, Thompson JD, Hawkins GD, Chambers CC, Giesen DJ, Winget P, Cramer CJ, Truhlar DG (2012) Minnesota solvation database—version 2012. University of Minnesota, Minneapolis

    Google Scholar 

  40. Wang J, Wang W, Huo S, Lee M, Kollman PA (2001) Solvation model based on weighted solvent accessible surface area. J Phys Chem B 105:5055–5067

    Article  CAS  Google Scholar 

  41. Lee S, Cho KH, Lee CJ, Kim GE, Na CH, In Y, No KT (2011) Calculation of the solvation free energy of neutral and ionic molecules in diverse solvents. J Chem Inf Model 51:105–114

    Article  CAS  Google Scholar 

  42. Choi H, Kang H, Park H (2015) Computational prediction of molecular hydration entropy with hybrid scaled particle theory and free-energy perturbation method. J Chem Theory Comput 11:4933–4942

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Creative Materials Discovery Program through the National Research Foundation of Korea funded by the Ministry of Science, ICT and Future Planning (2015M3D1A1069705), and by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education (NRF-2016R1D1A1B01014187).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwangseo Park.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4223 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, KC., Park, H. Extended solvent-contact model approach to blind SAMPL5 prediction challenge for the distribution coefficients of drug-like molecules. J Comput Aided Mol Des 30, 1019–1033 (2016). https://doi.org/10.1007/s10822-016-9928-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-016-9928-x

Keywords

Navigation