Skip to main content

Advertisement

Log in

Maximum common substructure-based Tversky index: an asymmetric hybrid similarity measure

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Current approaches for the assessment of molecular similarity can generally be divided into descriptor-based and substructure-based methods. The former require the application of similarity metrics that yield continuous similarity values, whereas the readout of the latter is binary (i.e. similar vs. not similar). However, it is also possible to combine descriptor-based and substructure-based methods to exploit advantages of individual methods in context and generate similarity measures for special applications. Herein we present a hybrid measure for asymmetric similarity calculations on the basis of maximum common core structures. This similarity function can be effectively applied to compare small reference compounds with larger test molecules, which is difficult using conventional metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Maggiora GM, Vogt M, Stumpfe D, Bajorath J (2014) Molecular similarity in medicinal chemistry. J Med Chem 57:3186–3204

    Article  CAS  Google Scholar 

  2. Willett P (2014) The calculation of molecular structural similarity: principles and practice. Mol Inf 33(6–7):403–413

    Article  CAS  Google Scholar 

  3. Vogt M, Stumpfe D, Geppert H, Bajorath J (2010) Scaffold hopping using two-dimensional fingerprints: true potential, black magic, or a hopeless endeavor? Guidelines for virtual screening. J Med Chem 12:5707–5715

    Article  Google Scholar 

  4. Gardiner EJ, Holliday JD, O’Dowd C, Willett P (2011) Effectiveness of 2D fingerprints for scaffold hoping. Future Med Chem 3:405–414

    Article  CAS  Google Scholar 

  5. Maggiora GM, Shanmugasundaram V (2004) Molecular similarity measures. In: Bajorath J (ed) Chemoinformatics—concepts, methods, and tools for drug discovery. Humana Press, Totowa NJ

    Google Scholar 

  6. Raymond W, Willett P (2002) Effectiveness of graph-based and fingerprint-based similarity measures for virtual screening of 2D chemical structure databases. J Comput-Aided Mol Des 16:59–71

    Article  CAS  Google Scholar 

  7. Kenny PW, Sadowski J (2005) Structure modification in chemical databases. In: Oprea TI (ed) Chemoinformatics in drug discovery. Wiley-VCH, Weinheim, pp 271–285

    Chapter  Google Scholar 

  8. Hussain J, Rea C (2010) Computationally efficient algorithm to identify matched molecular pairs (MMPs) in large data sets. J Chem Inf Model 50:339–348

    Article  CAS  Google Scholar 

  9. Zhang B, Vogt M, Maggiora GM, Bajorath J (2015) Design of chemical space networks using a Tanimoto similarity variant based upon maximum common substructures. J Comput Aided Mol Des 29:937–950

    Article  CAS  Google Scholar 

  10. Maggiora GM, Bajorath J (2014) Chemical space networks—a powerful new paradigm for the description of chemical space. J Comput-Aided Mol Des 28:795–802

    Article  CAS  Google Scholar 

  11. Tversky A (1977) Features of similarity. Psychol Rev 84:327–352

    Article  Google Scholar 

  12. Horvath D, Marcou G, Varnek A (2013) Do not hesitate to use Tversky—and other hints for successful active analogue searches with feature count descriptors. J Chem Inf Model 53:1543–1562

    Article  CAS  Google Scholar 

  13. Duesbury E, Holliday J, Willett P (2015) Maximum common substructure-based data fusion in similarity searching. J Chem Inf Model 55:222–230

    Article  CAS  Google Scholar 

  14. Wu M, Vogt M, Maggiora GM, Bajorath J (2016) Design of chemical space networks on the basis of Tversky similarity. J Comput-Aided Mol Des 30:1–12

    Article  Google Scholar 

  15. OEChem TK version 2.0.0; OpenEye Scientific Software, Santa Fe, NM. http://www.eyesopen.com

  16. Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J Chem Inf Model 50:742–754

    Article  CAS  Google Scholar 

  17. Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, Light Y, McGlinchey S, Michalovich D, Al-Lazikani B, Overington JP (2012) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 40(Database issue):D1100–D1107

    Article  CAS  Google Scholar 

  18. Cochran WG (1977) Sampling Techniques, 3rd edn. Wiley, New York

    Google Scholar 

  19. Wang Y, Eckert H, Bajorath J (2007) Apparent asymmetry in fingerprint similarity searching is a direct consequence of differences in bit densities and molecular size. ChemMedChem 2:1037–1042

    Article  CAS  Google Scholar 

  20. Wang Y, Bajorath J (2008) Balancing the influence of molecular complexity on fingerprint similarity searching. J Chem Inf Model 48:75–84

    Article  CAS  Google Scholar 

  21. Wang Y, Bajorath J (2010) Advanced fingerprint methods for similarity searching: balancing molecular complexity effects. Comb Chem High-Throughput Screen 13:220–228

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Bajorath.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kunimoto, R., Vogt, M. & Bajorath, J. Maximum common substructure-based Tversky index: an asymmetric hybrid similarity measure. J Comput Aided Mol Des 30, 523–531 (2016). https://doi.org/10.1007/s10822-016-9935-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-016-9935-y

Keywords

Navigation