Skip to main content
Log in

Calculation of distribution coefficients in the SAMPL5 challenge from atomic solvation parameters and surface areas

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

In the context of SAMPL5, we submitted blind predictions of the cyclohexane/water distribution coefficient (D) for a series of 53 drug-like molecules. Our method is purely empirical and based on the additive contribution of each solute atom to the free energy of solvation in water and in cyclohexane. The contribution of each atom depends on the atom type and on the exposed surface area. Comparatively to similar methods in the literature, we used a very small set of atomic parameters: only 10 for solvation in water and 1 for solvation in cyclohexane. As a result, the method is protected from overfitting and the error in the blind predictions could be reasonably estimated. Moreover, this approach is fast: it takes only 0.5 s to predict the distribution coefficient for all 53 SAMPL5 compounds, allowing its application in virtual screening campaigns. The performance of our approach (submission 49) is modest but satisfactory in view of its efficiency: the root mean square error (RMSE) was 3.3 log D units for the 53 compounds, while the RMSE of the best performing method (using COSMO-RS) was 2.1 (submission 16). Our method is implemented as a Python script available at https://github.com/diogomart/SAMPL5-DC-surface-empirical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Eisenberg D, McLachlan AD (1986) Nature 319(6050):199

    Article  CAS  Google Scholar 

  2. Boyer RD, Bryan RL (2012) J Phys Chem B 116(12):3772

    Article  CAS  Google Scholar 

  3. Wang J, Wang W, Huo S, Lee M, Kollman PA (2001) J Phys Chem B 105(21):5055

    Article  CAS  Google Scholar 

  4. Hou T, Qiao X, Zhang W, Xu X (2002) J Phys Chem B 106(43):11295

    Article  CAS  Google Scholar 

  5. Ooi T, Oobatake M, Nemethy G, Scheraga HA (1987) Proc Natl Acad Sci 84(10):3086

    Article  CAS  Google Scholar 

  6. Pei J, Wang Q, Zhou J, Lai L (2004) Proteins Struct Funct Bioinform 57(4):651

    Article  CAS  Google Scholar 

  7. Wang J, Krudy G, Hou T, Zhang W, Holland G, Xu X (2007) J Chem Inf Model 47(4):1395

    Article  CAS  Google Scholar 

  8. Kleinjung J, Scott WR, Allison JR, van Gunsteren WF, Fraternali F (2012) J Chem Theory Comput 8(7):2391

    Article  CAS  Google Scholar 

  9. Huang SY, Zou X (2010) J Chem Inf Model 50(2):262

    Article  CAS  Google Scholar 

  10. Park H (2014) J Comput Aided Mol Des 28(3):175

    Article  CAS  Google Scholar 

  11. Mobley DL, Wymer KL, Lim NM, Guthrie JP (2014) J Comput Aided Mol Des 28(3):135

    Article  CAS  Google Scholar 

  12. Rustenburg AS, Dancer J, Lin B, Feng JA, Ortwine DF, Mobley DL, Chodera JD (2016) bioRxiv 063081. doi:10.1101/063081

  13. Lin B, Pease JH (2013) Comb Chem High Throughput Screen 16(10):817

    Article  CAS  Google Scholar 

  14. Bannan CC, Burley KH, Chiu M, Gilson MK, Mobley DL (2016) J Comput Aided Mol Des (in prep)

  15. Sanner MF, Olson AJ, Spehner JC (1996) Biopolymers 38(3):305

    Article  CAS  Google Scholar 

  16. Gasteiger J, Marsili M (1978) Tetrahedron Lett 34:3181

    Article  Google Scholar 

  17. OLBoyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) J Cheminform 3:33

    Article  Google Scholar 

  18. O’Boyle NM, Morley C, Hutchison GR (2008) Chem Cent J 2(5). doi:10.1186/1752-153X-2-5

  19. Mobley DL, Guthrie JP (2014) J Comput Aided Mol Des 28(7):711

    Article  CAS  Google Scholar 

  20. Mobley DL (2013) Experimental and calculated small molecule hydration free energies. Retrieved from http://www.escholarship.org/uc/item/6sd403pz

  21. R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org. ISBN 3-900051-07-0

  22. Villa A, Mark AE (2002) J Comput Chem 23(5):548

    Article  CAS  Google Scholar 

  23. Marenich AV, Cramer CJ, Truhlar DG (2009) J Phys Chem B 113(18):6378

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge European Union (FEDER funds POCI/01/0145/FEDER/007728) and National Funds (FCT/MEC, Fundação para a Ciência e Tecnologia and Ministério da Educação e Ciência) under the Partnership Agreement PT2020 UID/MULTI/04378/2013.UID/MULTI/04378/2013; NORTE-01-0145-FEDER-000024, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF) D.S.M thanks Fundação para a Ciência e Tecnologia for scholarship SFRH/BD/84922/2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diogo Santos-Martins.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 284 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos-Martins, D., Fernandes, P.A. & Ramos, M.J. Calculation of distribution coefficients in the SAMPL5 challenge from atomic solvation parameters and surface areas. J Comput Aided Mol Des 30, 1079–1086 (2016). https://doi.org/10.1007/s10822-016-9951-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-016-9951-y

Keywords

Navigation