Skip to main content
Log in

Prediction of peptide binding to a major histocompatibility complex class I molecule based on docking simulation

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Binding between major histocompatibility complex (MHC) class I molecules and immunogenic epitopes is one of the most important processes for cell-mediated immunity. Consequently, computational prediction of amino acid sequences of MHC class I binding peptides from a given sequence may lead to important biomedical advances. In this study, an efficient structure-based method for predicting peptide binding to MHC class I molecules was developed, in which the binding free energy of the peptide was evaluated by two individual docking simulations. An original penalty function and restriction of degrees of freedom were determined by analysis of 361 published X-ray structures of the complex and were then introduced into the docking simulations. To validate the method, calculations using a 50-amino acid sequence as a prediction target were performed. In 27 calculations, the binding free energy of the known peptide was within the top 5 of 166 peptides generated from the 50-amino acid sequence. Finally, demonstrative calculations using a whole sequence of a protein as a prediction target were performed. These data clearly demonstrate high potential of this method for predicting peptide binding to MHC class I molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

MHC:

Major histocompatibility complex

HLA:

Human leukocyte antigen

4-mer:

4 Amino acid residues

References

  1. von Boehmer H (1991) Positive and negative selection of the αβ T-cell repertoire in vivo. Curr Opin Immunol 3:210–215

    Article  Google Scholar 

  2. Reche PA, Reinherz EL (2003) Sequence variability analysis of human class I and class II MHC molecules: functional and structural correlates of amino acid polymorphisms. J Mol Biol 331:623–641

    Article  CAS  Google Scholar 

  3. Lafuente EM, Reche PA (2009) Prediction of MHC–peptide binding: a systematic and comprehensive overview. Curr Pharm Des 15:3209–3220

    Article  CAS  Google Scholar 

  4. Lundegaard C, Lund O, Buus S, Nielsen M (2010) Major histocompatibility complex class I binding predictions as a tool in epitope discovery. Immunology 130:309–318

    Article  CAS  Google Scholar 

  5. Zhang L, Udaka K, Mamitsuka H, Zhu S (2011) Toward more accurate pan-specific MHC–peptide binding prediction: a review of current methods and tools. Brief Bioinform 13:350–364

    Article  Google Scholar 

  6. Buus S, Lauemøller SL, Worning P, Kesmir C, Frimurer T, Corbet S, Fomsgaard A, Hilden J, Holm A, Brunak S (2003) Sensitive quantitative predictions of peptide-MHC binding by a ‘Query by Committee’ artificial neural network approach. Tissue Antigens 62:378–384

    Article  CAS  Google Scholar 

  7. Peters B, Sette A (2005) Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method. BMC Bioinform 6:132

    Article  Google Scholar 

  8. Jojic N, Reyes-Gomez M, Heckerman D, Kadie C, Schueler-Furman O (2006) Learning MHC I—peptide binding. Bioinformatics 22:e227–e235

    Article  CAS  Google Scholar 

  9. Jacob L, Vert J-P (2008) Efficient peptide—MHC-I binding prediction for alleles with few known binders. Bioinformatics 24:358–366

    Article  CAS  Google Scholar 

  10. Hoof I, Peters B, Sidney J, Pedersen LE, Sette A, Lund O, Buus S, Nielsen M (2009) NetMHCpan, a method for MHC class I binding prediction beyond humans. Immunogenetics 61:1–13

    Article  CAS  Google Scholar 

  11. Zhang H, Lundegaard C, Nielsen M (2009) Pan-specific MHC class I predictors: a benchmark of HLA class I pan-specific prediction methods. Bioinformatics 25:83–89

    Article  Google Scholar 

  12. Larsen ME, Kloverpris H, Stryhn A, Koofhethile CK, Sims S, Ndung’u T, Goulder P, Buus S, Nielsen M (2011) HLArestrictor—a tool for patient-specific predictions of HLA restriction elements and optimal epitopes within peptides. Immunogenetics 73:43–55

    Article  Google Scholar 

  13. Bui HH, Sidney J, Peters B, Sathiamurthy M, Sinichi A, Purton K-A, Mothé BR, Chisari FV, Watkins DI, Sette A (2005) Automated generation and evaluation of specific MHC binding predictive tools: ARB matrix applications. Immunogenetics 57:304–314

    Article  CAS  Google Scholar 

  14. Shen W-J, Wei YT, Guo X, Smale S, Wong H-S, Li SC (2014) MHC binding prediction with KernelRLSpan and its variations. J Immunol Methods 406:10–20

    Article  CAS  Google Scholar 

  15. Altuvia Y, Sette A, Sidney J, Southwood S, Margalit H (1997) A structure-based algorithm to predict potential binding peptides to MHC molecules with hydrophobic binding pockets. Hum Immunol 58:1–11

    Article  CAS  Google Scholar 

  16. Schueler-Furman O, Altuvia Y, Sette A, Margalit H (2000) Structure-based prediction of binding peptides to MHC class I molecules: application to a broad range of MHC alleles. Protein Sci 9:1838–1846

    Article  CAS  Google Scholar 

  17. Zhao B, Mathura VS, Rajaseger G, Moochhala S, Sakharkar MK, Kangueane P (2003) A novel MHCp binding prediction model. Hum Immunol 64:1123–1143

    Article  CAS  Google Scholar 

  18. Logean A, Sette A, Rognan D (2001) Customized versus universal scoring functions: application to class I MHC–peptide binding free energy predictions. Bioorg Med Chem Lett 11:675–679

    Article  CAS  Google Scholar 

  19. Antes I, Siu SWI, Lengauer T (2006) DynaPred: a structure and sequence based method for the prediction of MHC class I binding peptide sequences and conformations. Bioinformatics 22:e16–e24

    Article  CAS  Google Scholar 

  20. Tong JC, Tan TW, Ranganathan S (2004) Modeling the structure of bound peptide ligands to major histocompatibility complex. Protein Sci 13:2523–2532

    Article  CAS  Google Scholar 

  21. Bui HH, Schiewe AJ, von Grafenstein H, Haworth IS (2006) Structural prediction of peptides binding to MHC class I molecules. Proteins 63:43–52

    Article  CAS  Google Scholar 

  22. Schiewe AJ, Haworth IS (2007) Structure-based prediction of MHC–peptide association: algorithm comparison and application to cancer vaccine design. J Mol Graph Model 26:667–675

    Article  CAS  Google Scholar 

  23. Bordner AJ, Abagyan R (2006) Ab initio prediction of peptide–MHC binding geometry for diverse class I MHC allotypes. Proteins 63:512–526

    Article  CAS  Google Scholar 

  24. Nakamura Y, Tai S, Oshita C, Iizuka A, Ashizawa T, Saito S, Yamaguchi S, Kondo H, Yamaguchi K, Akiyama Y (2011) Analysis of HLA-A24-restricted peptides of carcinoembryonic antigen using a novel structure-based peptide–HLA docking algorithm. Cancer Sci 102:690–696

    Article  CAS  Google Scholar 

  25. Mori M, Matsuki K, Maekawa T, Tanaka M, Sriwanthana B, Yokoyama M, Ariyoshi K (2012) Development of a novel in silico docking simulation model for the fine HIV-1 cytotoxic T lymphocyte epitope mapping. PLoS ONE 7:e41703

    Article  CAS  Google Scholar 

  26. Pierce BG, Weng Z (2013) A flexible docking approach for prediction of T cell receptor–peptide–MHC complexes. Protein Sci 22:35–46

    Article  CAS  Google Scholar 

  27. Kongkaew S, Yotmanee P, Rungrotmongkol T, Kaiyawet N, Meeprasert A, Kaburaki T, Noguchi H, Takeuchi F, Kungwan N, Hannongbua S (2015) Molecular dynamics simulation reveals the selective binding of human leukocyte antigen alleles associated with behcet’s disease. PLoS ONE 10:e0135575

    Article  Google Scholar 

  28. Rosenfeld R, Zheng Q, Vajda S, DeLisi C (1993) Computing the structure of bound peptides: application to antigen recognition by class I major histocompatibility complex receptors. J Mol Biol 234:515–521

    Article  CAS  Google Scholar 

  29. Sezerman U, Vajda S, DeLisi C (1996) Free energy mapping of class I MHC molecules and structural determination of bound peptides. Protein Sci 5:1272–1281

    Article  CAS  Google Scholar 

  30. Knapp B, Omasits U, Frantal S, Schreiner W (2009) A critical cross-validation of high throughput structural binding prediction methods for pMHC. J Comput Aided Mol Des 23:301–307

    Article  CAS  Google Scholar 

  31. Yanover C, Bradley P (2011) Large-scale characterization of peptide–MHC binding landscapes with structural simulations. Proc Natl Acad Sci USA 108:6981–6986

    Article  Google Scholar 

  32. Guo H-C, Jardetzky TS, Garrett TPJ, Lane WS, Strominger JL, Wiley DC (1992) Different length peptides bind to HLA-Aw68 similarly at their ends but bulge out in the middle. Nature 360:364–366

    Article  CAS  Google Scholar 

  33. Madden DR (1995) The three-dimensional structure of peptide–MHC complexes. Annu Rev Immunol 13:587–622

    Article  CAS  Google Scholar 

  34. Zhang C, Anderson A, DeLisi C (1998) Structural principles that govern the peptide-binding motifs of class I MHC molecules. J Mol Biol 281:929–947

    Article  CAS  Google Scholar 

  35. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    Article  CAS  Google Scholar 

  36. Case DA, Cheatham TE III, Darden T, Gohlke H, Luo R, Merz KM Jr, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688

    Article  CAS  Google Scholar 

  37. Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Crowley M, Walker RC, Zhang W, Merz KM Jr, Wang B, Hayik S, Roitberg A, Seabra G, Kolossvary I, Wong KF, Paesani F, Vanicek J, Wu X, Brozell SR, Steinbrecher I, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Mathews DH, Seetin MG, Sagui C, Babin V, Kollman PA (2008) AMBER 10. University of California, San Francisco

    Google Scholar 

  38. Reiser JB, Legoux F, Gras S, Trudel F, Chouquet A, Léger A, Gorrec ML, Machillot P, Bonneville M, Saulquin X, Housset D (2014) Analysis of Relationships between peptide/MHC structural features and naive T cell frequency in humans. J Immunol 193:5816–5826

    Article  CAS  Google Scholar 

  39. Sun Y, Liu J, Yang M, Gao F, Zhou J, Kitamura Y, Gao B, Tien P, Shu Y, Iwamoto A, Chen Z, Gao GF (2010) Identification and structural definition of H5-specific CTL epitopes restricted by HLA-A*0201 derived from the H5N1 subtype of influenza A viruses. J Gen Virol 91:919–930

    Article  CAS  Google Scholar 

  40. Gras S, Kedzierski L, Valkenburg SA, Laurie K, Liu YC, Denholm JT, Richards MJ, Rimmelzwaan GF, Kelso A, Doherty PC, Turner SJ, Rossjohn J, Kedzierska K (2010) Cross-reactive CD8 + T-cell immunity between the pandemic H1N1-2009 and H1N1-1918 influenza A viruses. Proc Natl Acad Sci USA 107:12599–12604

    Article  CAS  Google Scholar 

  41. Liu J, Zhang S, Tan S, Yi Y, Wu B, Cao B, Zhu F, Wang C, Wang H, Qi J, Gao GF (2012) Cross-allele cytotoxic T lymphocyte responses against 2009 pandemic H1N1 influenza A virus among HLA-A24 and HLA-A3 supertype-positive individuals. J Virol 86:13281–13294

    Article  CAS  Google Scholar 

  42. Celie PHN, Toebes M, Rodenko B, Ovaa H, Perrakis A, Schumacher TNM (2009) UV-induced ligand exchange in MHC class I protein crystals. J Am Chem Soc 131:12298–12304

    Article  CAS  Google Scholar 

  43. Stewart-Jones GBE, di Gleria K, Kollnberger S, McMichael AJ, Jones EY, Bowness P (2005) Crystal structures and KIR3DL1 recognition of three immunodominant viral peptides complexed to HLA-B*2705. Eur J Immunol 35:341–351

    Article  CAS  Google Scholar 

  44. Quiñones-Parra S, Grant E, Loh L, Nguyen THO, Campbell K-A, Tong SYC, Miller A, Doherty PC, Vijaykrishna D, Rossjohn J, Gras S (2014) Preexisting CD8+ T-cell immunity to the H7N9 influenza A virus varies across ethnicities. Proc Natl Acad Sci USA 111:1049–1054

    Article  Google Scholar 

  45. Liu YC, Chen Z, Neller MA, Miles JJ, Purcell AW, McCluskey J, Burrows SR, Rossjohn J, Gras S (2014) A molecular basis for the interplay between T cells, viral mutants, and human leukocyte antigen micropolymorphism. J Bio Chem 289:16688–16698

    Article  CAS  Google Scholar 

  46. Han C, Kawana-Tachikawa A, Shimizu A, Zhu D, Nakamura H, Adachi E, Kikuchi T, Koga M, Koibuchi T, Gao GF, Sato Y, Yamagata A, Martin E, Fukai S, Brumme ZL, Iwamoto A (2014) Switching and emergence of CTL epitopes in HIV-1 infection. Retrovirology 11:38

    Article  Google Scholar 

  47. Liu J, Wu P, Gao F, Qi J, Kawana-Tachikawa A, Xie J, Vavricka CJ, Iwamoto A, Li T, Gao GF (2010) Novel immunodominant peptide presentation strategy: a featured HLA-A* 2402-restricted cytotoxic T-lymphocyte epitope stabilized by intrachain hydrogen bonds from severe acute respiratory syndrome coronavirus nucleocapsid protein. J Virol 84:11849–11857

    Article  CAS  Google Scholar 

  48. Hülsmeyer M, Welfle K, Pöhlmann T, Misselwitz R, Alexiev Y, Welfle H, Saenger W, Uchanska-Ziegler B, Ziegler A (2005) Thermodynamic and structural equivalence of two HLA-B27 subtypes complexed with a self-peptide. J Mol Biol 346:1367–1379

    Article  Google Scholar 

  49. Kumar P, Vahedi-Faridi A, Saenger W, Ziegler A, Uchanska-Ziegler B (2009) Conformational changes within the HLA-A1: MAGE-A1 complex induced by binding of a recombinant antibody fragment with TCR-like specificity. Protein Sci 18:37–49

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS KAKENHI, Grant-in-Aid for Scientific Research (C), Grant No. 16K00397.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Ishikawa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 603 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishikawa, T. Prediction of peptide binding to a major histocompatibility complex class I molecule based on docking simulation. J Comput Aided Mol Des 30, 875–887 (2016). https://doi.org/10.1007/s10822-016-9967-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-016-9967-3

Keywords