Skip to main content

Advertisement

Log in

Multiple receptor-ligand based pharmacophore modeling and molecular docking to screen the selective inhibitors of matrix metalloproteinase-9 from natural products

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Matrix metalloproteinase-9 (MMP-9) is an attractive target for cancer therapy. In this study, the pharmacophore model of MMP-9 inhibitors is built based on the experimental binding structures of multiple receptor-ligand complexes. It is found that the pharmacophore model consists of six chemical features, including two hydrogen bond acceptors, one hydrogen bond donor, one ring aromatic regions, and two hydrophobic (HY) features. Among them, the two HY features are especially important because they can enter the S1′ pocket of MMP-9 which determines the selectivity of MMP-9 inhibitors. The reliability of pharmacophore model is validated based on the two different decoy sets and relevant experimental data. The virtual screening, combining pharmacophore model with molecular docking, is performed to identify the selective MMP-9 inhibitors from a database of natural products. The four novel MMP-9 inhibitors of natural products, NP-000686, NP-001752, NP-014331, and NP-015905, are found; one of them, NP-000686, is used to perform the experiment of in vitro bioassay inhibiting MMP-9, and the IC50 value was estimated to be only 13.4 µM, showing the strongly inhibitory activity of NP-000686 against MMP-9, which suggests that our screening results should be reliable. The binding modes of screened inhibitors with MMP-9 active sites were discussed. In addition, the ADMET properties and physicochemical properties of screened four compounds were assessed. The found MMP-9 inhibitors of natural products could serve as the lead compounds for designing the new MMP-9 inhibitors by carrying out structural modifications in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Johnson LL, Dyer R, Hupe DJ (1998) Matrix metalloproteinases. Curr Opin Chem Biol 2:466–471

    Article  CAS  Google Scholar 

  2. Shuman Moss LA, Jensen-Taubman S, Stetler-Stevenson WG (2012) Matrix metalloproteinases changing roles in tumor progression and metastasis. Am J Pathol 181(6):1895–1899

    Article  Google Scholar 

  3. Jaina A, Bahuguna R (2015) Role of matrix metalloproteinases in dental caries, pulp and periapical inflammation: an overview. J Oral Biol Craniofac Res 5:212–218

    Article  Google Scholar 

  4. da Cunha Nascimento D, de Cassia Marqueti Durigan R, Tibana RA, Durigan JLQ, Navalta JW, Prestes J (2015) The response of matrix metalloproteinase-9 and -2 to exercise. Sports Med 45:269–278

    Article  Google Scholar 

  5. Asano Y, Iwai S, Okazaki M, Kumai T, Munemasa Y, Oonuma S, Tadokoro M, Kobayashi S, Oguchi K (2008) Matrix metalloproteinase-9 in spontaneously hypertensive hyperlipidemic rats. Pathophysiology 15:157–166

    Article  CAS  Google Scholar 

  6. Lambert V, Munaut C, Jost M, Noël A, Werb Z, Foidart JM, Rakic JM (2002) Matrix metalloproteinase-9 contributes to choroidal neovascularization. Am J Pathol 161(4):1247–1253

    Article  CAS  Google Scholar 

  7. Torii A, Kodera Y, Ito M, Shimizu Y, Hirai T, Yasui K, Morimoto T, Yamamura Y, Kato T, Hayakawa T, Fujimoto N, Kito T (1998) Matrix metalloproteinase 9 in mucosally invasive gastric cancer. Gastric Cancer 1:142–145

    Article  Google Scholar 

  8. Farhat AA, Mohamad AS, Shareef MM, Attia GA, Eid MA, Taha RW (2014) Asthma remodeling: the pathogenic role of matrix metalloproteinase-9. Egypt J Chest Dis Tubercul 63:755–759

    Article  Google Scholar 

  9. Lorenzl S, Albers DS, Relkin N, Ngyuen T, Hilgenberg SL, Chirichigno J, Cudkowicz ME, Flint Beal M (2003) Increased plasma levels of matrix metalloproteinase-9 in patients with Alzheimer’s disease. Neurochem Int 43:191–196

    Article  CAS  Google Scholar 

  10. Kim WU, Min SY, Cho ML, Hong KH, Shin YJ, Park SH Cho CS (2005) Elevated matrix metalloproteinase-9 in patients with systemic. Arthritis Res Ther 7:71–79

    Article  Google Scholar 

  11. Kaplan A, Spiller KJ, Towne C, Kanning KC, Choe GT, Geber A, Akay T, Aebischer P, Henderson CE (2014) Neuronal matrix metalloproteinase-9 is a determinant of selective neurodegeneration. Neuron 81:333–348

    Article  CAS  Google Scholar 

  12. Vijayababu MR, Arunkumar A, Kanagaraj P, Venkataraman P, Krishnamoorthy G, Arunakaran J (2006) Quercetin downregulates matrix metalloproteinases 2 and 9 proteins expression in prostate cancer cells (PC-3). Mol Cell Biochem 287:109–116

    Article  CAS  Google Scholar 

  13. Stetler-Stevenson WG, Yu AE (2001) Proteases in invasion: matrix metalloproteinases. Semin Cancer Biol 11:143–152

    Article  CAS  Google Scholar 

  14. Fabre B, Ramos A, de Pascual-Teresa B (2014) Targeting matrix metalloproteinases: exploring the dynamics of the S1′ pocket in the design of selective, small molecule inhibitors. J Med Chem 57:10205–10219

    Article  CAS  Google Scholar 

  15. Wojtowicz-Praga SM, Dickson RB, Hawkins MJ (1997) Matrix metalloproteinase inhibitors. Invest New Drug 15:61–75

    Article  CAS  Google Scholar 

  16. Coussens LM, Fingleton B, Matrisian LM (2002) Matrix metalloproteinase inhibitors and cancer—trials and Tribulations. Science 295:2387–2392

    Article  CAS  Google Scholar 

  17. Pavlaki M, Zucker S (2003) Matrix metalloproteinase inhibitors (MMPIs): the beginning of phase I or the termination of phase III clinical trials. Cancer Metast Rev 22:177–203

    Article  CAS  Google Scholar 

  18. Mannello F, Tonti G, Papa S (2005) Matrix metalloproteinase inhibitors as anticancer therapeutics. Curr Cancer Drug Target 5:285–298

    Article  CAS  Google Scholar 

  19. Reddy L, Odhav B, Bhoola KD (2003) Natural products for cancer prevention: a global perspective. Pharmacol Ther 99:1–13

    Article  CAS  Google Scholar 

  20. Wang LY, Li X, Zhang SD, Lu WQ, Liao S, Liu XF, Shan L, Shen X, Jiang HL, Zhang WD, Huang J, Li HL (2012) Natural products as a gold mine for selective matrix metalloproteinases inhibitors. Bioorg Med Chem 20:4146–4171

    Google Scholar 

  21. Mannello F (2006) Natural bio-drugs as matrix metalloproteinase inhibitors: new perspectives on the Horizon. Recent Pat Anti-Canc Drug Discov 1:91–103

    Article  CAS  Google Scholar 

  22. Ende C, Gebhardt R (2004) Inhibition of MMP-2 and MMP-9 activities by selected flavonoids. Planta Med 70:1006–1008

    Article  CAS  Google Scholar 

  23. Jin UH, Chung TW, Kang SK, Suh SJ, Kim JK, Chung KH, Gu YH, Suzuki I, Kim CH (2005) Caffeic acid phenyl ester in propolis is a strong inhibitor of matrix metalloproteinase-9 and invasion inhibitor: isolation and identification. Clin Chim Acta 362:57–64

    Article  CAS  Google Scholar 

  24. Jin UH, Lee JY, Kang SK, Kim JK, Park WH, Kim JG, Moon SK, Kim CH (2005) A phenolic compound, 5-caffeoylquinic acid (chlorogenic acid), is a new type and strong matrix metalloproteinase-9 inhibitor: isolation and identification from methanol extract of Euonymus alatus. Life Sci 77:2760–2769

    Article  CAS  Google Scholar 

  25. Wierzchacz C, Su E, Kolander J, Gebhardt R (2009) Differential inhibition of matrix metalloproteinases-2, -9, and -13 activities by selected anthraquinones. Planta Med 75(4):327–329

    Article  CAS  Google Scholar 

  26. Wolber G, Seidel T, Bendix F, Langer T (2008) Molecule-pharmacophore superpositioning and pattern matching in computational drug design. Drug Discov Today 13:23–29

    Article  CAS  Google Scholar 

  27. Yang SY (2010) Pharmacophore modeling and applications in drug discovery: challenges and recent advances. Drug Discov Today 15:444–450

    Article  CAS  Google Scholar 

  28. Kalva S, Azhagiya Singam ER, Rajapandian V, Saleena LM, Subramanian V (2014) Discovery of potent inhibitor for matrix metalloproteinase-9 by pharmacophore based modeling and dynamics simulation studies. J Mol Graph Model 49:25–37

    Article  CAS  Google Scholar 

  29. Halder AK, Saha A, Jha T (2013) Exploring QSAR and pharmacophore mapping of structurally diverse selective matrix metalloproteinase-2 inhibitors. J Pharm Pharmacol 65:1541–1554

    Article  CAS  Google Scholar 

  30. Kalva S, Saranyah K, Suganya PR, Nisha M, Saleena LM (2013) Potent inhibitors precise to S1 loop of MMP-13, a crucial target for osteoarthritis. J Mo Graph Model 44:297–310

    Article  CAS  Google Scholar 

  31. Discovery Studio, (2010) Version 3.0 Accelrys, Inc., San Diego

  32. Camodeca C, Nuti E, Tepshi L, Boero S, Tuccinardi T, Stura EA, Poggi A, Zocchi MR, Rossello A (2016) Discovery of a new selective inhibitor of a disintegrin and metalloprotease 10 (ADAM-10) able to reduce the shedding of NKG2D ligands in Hodgkin’s lymphoma cell models. Eur J Med Chem 11:193–201

    Article  Google Scholar 

  33. Nuti E, Cantelmo AR, Gallo C, Bruno A, Bassani B, Camodeca C, Tuccinardi T, Vera L, Orlandini E, Nencetti S, Stura EA, Martinelli A, Dive V, Albini A, Rossello A (2015) N-O-Isopropyl sulfonamido-based hydroxamates as matrix metalloproteinase inhibitors: hit selection and in vivo antiangiogenic activity. J Med Chem 58:7224–7240

    Article  CAS  Google Scholar 

  34. Antoni C, Vera L, Devel L, Catalani MP, Czarny B, Cassar-Lajeunesse E, Nuti E, Rossello A, Dive V, Stura EA (2013) Crystallization of bi-functional ligand protein complexes. J Struct Biol 182:246–254

    Article  CAS  Google Scholar 

  35. Tochowicz A, Maskos K, Huber R, Oltenfreiter R, Dive V, Yiotakis A, Zanda M, Bode W, Goettig P (2007) Crystal structures of MMP-9 complexes with five inhibitors: contribution of the flexible arg424 side-chain to selectivity. J Mol Biol 371:989–1006

    Article  CAS  Google Scholar 

  36. Xue X, Wei JL, Xu LL, Xi MY, Xu XL, Liu F, Guo XK, Wang L, Zhang XJ, Zhang MY, Lu MC, Sun HP, You QD (2013) Effective screening strategy using ensembled pharmacophore models combined with cascade docking: application to p53-MDM2 interaction inhibitors. J Chem Inf Model 53:2715–2729

    Article  CAS  Google Scholar 

  37. Tai WT, Lu T, Yuan HL, Wang FX, Liu HC, Lu S, Leng Y, Zhang WW, Jiang YL, Chen YD (2012) Pharmacophore modeling and virtual screening studies to identify new c-Met inhibitors. J Mol Model 18:3087–3100

    Article  CAS  Google Scholar 

  38. Gilson MK, Liu T, Baitaluk M, Nicola G, Hwang L, Chong J (2016) Binding DB in 2015: a public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res 44:1045–1063

    Article  Google Scholar 

  39. Irwin JJ (2008) Community benchmarks for virtual screening. J Comput Aided Mol Des 22(3):193–199

    Article  CAS  Google Scholar 

  40. Mysinger MM, Carchia M, Irwin JJ, Shoichet BK (2012) Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J Med Chem 55(14):6582–6594

    Article  CAS  Google Scholar 

  41. Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG (2012) ZINC: a free tool to discover chemistry for biology. J Chem Inf Model 52(7):1757–1768

    Article  CAS  Google Scholar 

  42. AnalytiCon Discovery, GmbH, Potsdam, Germany

  43. Xie HZ, Liu LY, Ren JX, Zhou JP, Zheng RL, Li LL, Yang SY (2011) Pharmacophore modeling and hybrid virtual screening for the discovery of novel IkappaB kinase 2 (IKK2) inhibitors. J Biomol Struct Dyn 29:165–179

    Article  CAS  Google Scholar 

  44. Thilagavathi R, Mancera RL (2015) Ligand–protein cross-docking with water molecules. J Chem Inf Model 50:415–421

    Article  Google Scholar 

  45. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46(1–3):3–26

    Article  CAS  Google Scholar 

  46. Zhong HZ, Wees MA, Faure TD, Carrillo C, Arbiser J, Bowen JP (2011) The impact of ionization states of matrix metalloproteinase inhibitors on docking-based inhibitor design. ACS Med Chem Lett 2:455–460

    Article  CAS  Google Scholar 

  47. Tiwari M, Lee JK (2010) Molecular modeling studies of L-arabinitol 4-dehydrogenase of hypocrea jecorina: its binding interactions with substrate and cofactor. J Mol Graph Model 28:707–713

    Article  CAS  Google Scholar 

  48. Huang HB, Liu NN, Guo HP, Liao SY, Li XF, Yang CS, Liu ST, Song WB, Liu CJ, Guan LX, Li B, Xu L, Zhang CG, Wang XJ, Dou QP, Liu JB (2012) L-carnitine is an endogenous HDAC inhibitor selectively inhibiting cancer cell growth in vivo and in vitro. PLoS ONE 7:1–10

    Article  Google Scholar 

  49. Zhou ZG, Yao QZ, Lei D, Zhang QQ, Zhang J (2014) Investigations on the mechanisms of interactions between matrix metalloproteinase 9 and its flavonoid inhibitors using a combination of molecular docking, hybrid quantum mechanical/molecular mechanical calculations, and molecular dynamics simulations. Can J Chem 92:821–830

    Article  CAS  Google Scholar 

  50. Stote RH, Karplus M (1995) Zinc binding in proteins and solution: a simple but accurate nonbonded representation. Proteins 23:12–31

    Article  CAS  Google Scholar 

  51. Zhang J, Li H, Fan YR, Zhou X (2012) Mechanisms of interaction between luteolin and the catalytic zinc ion in matrix metalloproteinases: a computational study. J Phys Org Chem 25:1306–1314

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 81403118).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Q., Wang, Y., Hou, J. et al. Multiple receptor-ligand based pharmacophore modeling and molecular docking to screen the selective inhibitors of matrix metalloproteinase-9 from natural products. J Comput Aided Mol Des 31, 625–641 (2017). https://doi.org/10.1007/s10822-017-0028-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-017-0028-3

Keywords

Navigation