Skip to main content
Log in

New insights into flavivirus biology: the influence of pH over interactions between prM and E proteins

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Diseases caused by flaviviruses, such as dengue and zika, are globally recognized as major threats. During infection, a critical point in their replicative cycle is the maturation step, which occurs throughout the cellular exocytic pathway. This step is a pH-dependent process that involves the modification of the viral envelope by converting prM (pre-membrane) into M (membrane) proteins with the release of a “pr peptide”. After this reaction, the pr peptides remain bound to the viral envelope while the virions cross the acidic trans-Golgi network, and are released only at neutral pH after secretion of the virus particles. Despite this current knowledge, the molecular basis of the flavivirus maturation step is largely unknown. Here, based on the crystal structure of the dengue pr–E complex (“pr peptide” bound to virus envelope protein) and using molecular dynamics simulations, we found that the pH shift from acidic to neutral yields considerable structural changes in the system. Dynamic cross correlation maps and root mean square deviation analyses revealed that the pr–E junction is clearly unstable under neutral pH. Secondary structure analysis also revealed that the fusion loop region, present in the E protein, is sensitive to pH and tends to unstructure at a neutral environment. Moreover, we found that five residues present in the E protein, Gly102, His244, Thr70, Thr68 and Asn67 are critical to confer stability to the pr–E complex while inside the Golgi apparatus. This work brings details about the dynamical behavior of the pr–E system, helps to better understand the flavivirus biology and may also be of use in the development of novel antiviral strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lindenbach BD, Rice CM (2003) Adv Virus Res 59:23–61

    Article  CAS  Google Scholar 

  2. Ferlenghi I, Clarke M, Ruttan T, Allison SL, Schalich J, Heinz FX, Harrison SC, Rey FA, Fuller SD (2001) Mol Cell 7(3):593–602

    Article  CAS  Google Scholar 

  3. Harrison SC (2005) Adv Virus Res 64:231–61

    Article  CAS  Google Scholar 

  4. Kanai R, Kar K, Anthony K, Gould LH, Ledizet M, Fikrig E, Marasco WA, Koski RA, Modis Y (2006) J Virol 80(22):11000–11008

    Article  CAS  Google Scholar 

  5. Harrison SC (2008) J Cell Biol 183(2):177–179

    Article  CAS  Google Scholar 

  6. Stadler K, Allison SL, Schalich J, Heinz FX (1997) J Virol 71(11):8475–8481

    CAS  Google Scholar 

  7. Li L, Lok SM, Yu IM, Zhang Y, Kuhn RJ, Chen J, Rossmann MG (2008) Science 319(5871):1830–1834

    Article  CAS  Google Scholar 

  8. Yu IM, Zhang W, Holdaway HA, Li L, Kostyuchenko VA, Chipman PR, Kuhn RJ, Rossmann MG, Chen J (2008) Science 319(5871):1834–1837

    Article  CAS  Google Scholar 

  9. Zheng A, Yuan F, Kleinfelter LM, Kielian M (2014) Nat Commun 5:3877

    CAS  Google Scholar 

  10. Dubey KD, Chaubey AK, Ojha RP (2011) Biochim Biophys Acta 1814(12):1796–1801

    Article  CAS  Google Scholar 

  11. Degrève L, Fuzo CA, Caliri A (2012) J Comput Aided Mol Des 26(12):1311–1325

    Article  Google Scholar 

  12. Mendes YS, Alves NS, Souza TL, Sousa IP Jr, Bianconi ML, Bernardi RC, Pascutti PG, Silva JL, Gomes AM, Oliveira AC (2012) PLoS ONE 7(10):e47596. Central PMCID: PMC3477123

  13. Dubey KD, Chaubey AK, Ojha RP (2013) Biochim Biophys Acta 1834(1):53–64

    Article  CAS  Google Scholar 

  14. Degréve L, Fuzo CA (2013) Genet Mol Res 12(1):348–359

    Article  Google Scholar 

  15. Fuzo CA, Degrève L (2014) J Biomol Struct Dyn 32(10):1563–1574

    Article  CAS  Google Scholar 

  16. Marzinek JK, Lakshminarayanan R, Goh E, Huber RG, Panzade S, Verma C, Bond PJ (2016) Sci Rep 6:19160

    Article  CAS  Google Scholar 

  17. Rogers DM, Kent MS, Rempe SB (2015) Biochim Biophys Acta 1848(4):1041–1052

    Article  CAS  Google Scholar 

  18. Kampmann T, Mueller DS, Mark AE, Young PR, Kobe B (2006) Structure 14(10):1481–1487

    Article  CAS  Google Scholar 

  19. Mueller DS, Kampmann T, Yennamalli R, Young PR, Kobe B, Mark AE (2008) Biochem Soc Trans 36(Pt 1):43–45

    Article  CAS  Google Scholar 

  20. Carneiro FA, Stauffer F, Lima CS, Juliano MA, Juliano L, Da Poian AT (2003) J Biol Chem 278(16):13789–13794

    Article  CAS  Google Scholar 

  21. Fritz R, Stiasny K, Heinz FX (2008) J Cell Biol 183(2):353–361

    Article  CAS  Google Scholar 

  22. Kadlec J, Loureiro S, Abrescia NG, Stuart DI, Jones IM (2008) Nat Struct Mol Biol 15(10):1024–1030

    Article  CAS  Google Scholar 

  23. Qin ZL, Zheng Y, Kielian M (2009) J Virol 83(9):4670–4677

    Article  CAS  Google Scholar 

  24. Thoennes S, Li ZN, Lee BJ, Langley WA, Skehel JJ, Russell RJ, Steinhauer DA (2008) Virology 370(2):403–414

    Article  CAS  Google Scholar 

  25. Fritz R, Blazevic J, Taucher C, Pangerl K, Heinz FX, Stiasny K (2011) J Virol 85(9):4377–4385

    Article  Google Scholar 

  26. Konishi E, Mason PW (1993) J Virol 67(3):1672–1675

    CAS  Google Scholar 

  27. Lorenz IC, Allison SL, Heinz FX, Helenius A (2002) J Virol 76(11):5480–5491

    Article  CAS  Google Scholar 

  28. Zhang Q, Hunke C, Yau YH, Seow V, Lee S, Tanner LB, Guan XL, Wenk MR, Fibriansah G, Chew PL, Kukkaro P, Biukovic G, Shi PY, Shochat SG, Grüber G, Lok SM (2012) J Biol Chem 287(48):40525–40534

    Article  CAS  Google Scholar 

  29. Yu IM, Holdaway HA, Chipman PR, Kuhn RJ, Rossmann MG, Chen J (2009) J Virol 83(23):12101–12107

    Article  CAS  Google Scholar 

  30. Edeling MA, Diamond MS, Fremont DH (2014) Proc Natl Acad Sci USA 111(11):4285–4290

    Article  CAS  Google Scholar 

  31. Oliveira ER, de Alencastro RB, Horta BA (2016) Eur Biophys J 45(6):573–580

    Article  CAS  Google Scholar 

  32. Klein DE, Choi JL, Harrison SC (2013) J Virol 87(4):2287–2293

    Article  CAS  Google Scholar 

  33. Luca VC, Nelson CA, Fremont DH (2013) J Virol 87(2):818–828

    Article  CAS  Google Scholar 

  34. Stiasny K, Heinz FX (2006) J Gen Virol 87(Pt10):2755–2766

    Article  CAS  Google Scholar 

  35. Søndergaard CR, Olsson MH, Rostkowski M, Jensen JH (2011) J Chem Theory Comput 7(7):2284–2295

    Article  Google Scholar 

  36. Olsson MH, Søndergaard CR, Rostkowski M, Jensen JH (2011) J Chem Theory Comput 7(2):525–537

    Article  CAS  Google Scholar 

  37. Word JM, Lovell SC, Richardson JS, Richardson DC (1999) J Mol Biol 285(4):1735–1747

    Article  CAS  Google Scholar 

  38. Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA (2004) Nucleic Acids Res 32(Web Server issue):W665–W667

  39. Berendsen HC, van der Spoel D, van Drunen R (1995) Comput Phys 91:43–56

    Article  CAS  Google Scholar 

  40. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) J Chem Theory Comput 4(3):435–447

    Article  CAS  Google Scholar 

  41. Schmid N, Eichenberger AP, Choutko A, Riniker S, Winger M, Mark AE, van Gunsteren WF (2011) Eur Biophys J 40(7):843–856

    Article  CAS  Google Scholar 

  42. Berendsen HC, Postma JM (1981) van Gunsteren WF Hermans J. In: Pullman B (ed) Intermolecular Forces. Reidel, Dordrecht, p 331

    Chapter  Google Scholar 

  43. Hockney RW (1970) Methods Comput Phys 9:135–211

    Google Scholar 

  44. Hess B, Bekker H, Berendsen HC, Fraaije JM (1997) J Comput Chem 18:1463–1472

    Article  CAS  Google Scholar 

  45. Essmann PU, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) J Chem Phys 103:8577–8593

    Article  CAS  Google Scholar 

  46. Páll S, Hess B (2013) Comput Phys Commun 184:2641–2650

    Article  Google Scholar 

  47. Bussi G, Donadio D, Parrinello M (2007) J Chem Phys 126:014101/1-014101/7

  48. Berendsen HC, Postma JM, van Gunsteren WF, di Nola A, Haak JR (1984) J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  49. Parrinello M, Rahman A (1980) Phys Rev Lett 45:1196–1199

    Article  CAS  Google Scholar 

  50. The PyMOL Molecular Graphics System, Version 1.2r3pre, Schrödinger, LLC

  51. Touw WG, Baakman C, Black J, te Beek TA, Krieger E, Joosten RP, Vriend G (2015) Nucleic Acids Res 43(Database issue):D364–D368

  52. Horta BAC, Cirino JJV, de Alencastro RB (2007) Proteins Struct Funct Bioinf 67:517–525

    Article  CAS  Google Scholar 

  53. Horta BAC, Cirino JJV, de Alencastro RB (2008) J Mol Graphics Model 26:1091–1103

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was developed with the assistance of Núcleo Avançado de Computação de Alto Desempenho (NACAD) localized at Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia (COPPE), Universidade Federal do Rio de Janeiro (UFRJ). Edson Oliveira thanks Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for his post-doctoral fellowship. We also acknowledge the Brazilian foundations Fundação Carlos Chagas de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) (Grant Numbers: E-26/203.198/2016, E-26/010.002420/2016, E-26/201.258/2015) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno A. C. Horta.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 4652 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, E.R.A., de Alencastro, R.B. & Horta, B.A.C. New insights into flavivirus biology: the influence of pH over interactions between prM and E proteins. J Comput Aided Mol Des 31, 1009–1019 (2017). https://doi.org/10.1007/s10822-017-0076-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-017-0076-8

Keywords

Navigation