Skip to main content
Log in

Bioactive focus in conformational ensembles: a pluralistic approach

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Computational generation of conformational ensembles is key to contemporary drug design. Selecting the members of the ensemble that will approximate the conformation most likely to bind to a desired target (the bioactive conformation) is difficult, given that the potential energy usually used to generate and rank the ensemble is a notoriously poor discriminator between bioactive and non-bioactive conformations. In this study an approach to generating a focused ensemble is proposed in which each conformation is assigned multiple rankings based not just on potential energy but also on solvation energy, hydrophobic or hydrophilic interaction energy, radius of gyration, and on a statistical potential derived from Cambridge Structural Database data. The best ranked structures derived from each system are then assembled into a new ensemble that is shown to be better focused on bioactive conformations. This pluralistic approach is tested on ensembles generated by the Molecular Operating Environment’s Low Mode Molecular Dynamics module, and by the Cambridge Crystallographic Data Centre’s conformation generator software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Schrodinger LLC, MacroModel, release 2017-4, San Diego, CA

  2. Cappel D et al (2015) Exploring conformational search protocols for ligand-based virtual screening and 3-D QSAR modeling. J Comput Aided Mol Des 29(2):165–182

    Article  CAS  Google Scholar 

  3. Chemical Computing Group, Inc., Molecular Operating Environment, version 2016.08

  4. OpenEye Scientific Software, Inc., Omega, version 2.5.1.4.2013

  5. Conformation search performance with XedeX. 2011; Available from http://www.cresset-group.com/2011/05/conformation-search-performance-with-xedex/

  6. Macrae CF et al (2008) Mercury CSD 2.0—new features for the visualization and investigation of crystal structures. J Appl Crystallogr 41(1):466–470

    Article  CAS  Google Scholar 

  7. RDKit: Open Source Cheminformatics Software. Available from http://www.rdkit.org

  8. Miteva MA, Guyon F, Tuffery P (2010) Frog2: efficient 3D conformation ensemble generator for small compounds. Nucleic Acids Res 38:(Web Server):W622–W627

    Article  CAS  Google Scholar 

  9. Vainio MJ, Johnson MS (2007) Generating conformer ensembles using a multiobjective genetic algorithm. J Chem Inf Model 47(6):2462–2474

    Article  CAS  Google Scholar 

  10. O’Boyle NM et al (2011) Confab—systematic generation of diverse low energy conformers. J Cheminform. https://doi.org/10.1186/1758-2946-3-8

    Google Scholar 

  11. Klett J et al (2014) ALFA: Automatic ligand flexibility assignment. J Chem Inf Model 54(1):314–323

    Article  CAS  Google Scholar 

  12. Watts KS et al (2014) Macrocycle conformational sampling with MacroModel. J Chem Inf Model 54(10):2680–2696

    Article  CAS  Google Scholar 

  13. Pan L-L et al (2015) Free energy-based conformational search algorithm using the movable type sampling method. J Chem Theory Comput 11(12):5853–5864

    Article  CAS  Google Scholar 

  14. Supady A, Blum V, Baldauf C (2015) First-principles molecular structure search with a genetic algorithm. J Chem Inf Model 55(11):2338–2348

    Article  CAS  Google Scholar 

  15. Anighoro A, de la Vega A, de Leon, Bajorath J (2016) Predicting bioactive conformations and binding modes of macrocycles. J Comput Aided Mol Des 30(10):841–849

    Article  CAS  Google Scholar 

  16. Kirchmair J et al (2006) Comparative performance assessment of the conformational model generators omega and catalyst: a large-scale survey on the retrieval of protein-bound ligand conformations. J Chem Inf Model 46(4):1848–1861

    Article  CAS  Google Scholar 

  17. Agrafiotis DK et al (2007) Conformational sampling of bioactive molecules: a comparative study. J Chem Inf Model 47(3):1067–1086

    Article  CAS  Google Scholar 

  18. Chen I-J, Foloppe N (2008) Conformational sampling of druglike molecules with MOE and catalyst: implications for pharmacophore modeling and virtual screening. J Chem Inf Model 48(9):1773–1791

    Article  CAS  Google Scholar 

  19. Ebejer J-P, Morris GM, Deane CM (2012) Freely available conformer generation methods: how good are they?. J Chem Inf Model 52(5):1146–1158

    Article  CAS  Google Scholar 

  20. Chen I-J, Foloppe N (2013) Tackling the conformational sampling of larger flexible compounds and macrocycles in pharmacology and drug discovery. Bioorg Med Chem 21(24):7898–7920

    Article  CAS  Google Scholar 

  21. Watts KS et al (2010) ConfGen: a conformational search method for efficient generation of bioactive conformers. J Chem Inf Model 50(4):534–546

    Article  CAS  Google Scholar 

  22. Labute P (2010) LowModeMD: implicit low-mode velocity filtering applied to conformational search of macrocycles and protein loops. J Chem Inf Model 50(5):792–800

    Article  CAS  Google Scholar 

  23. Riniker S, Landrum GA (2015) Better informed distance geometry: using what we know to improve conformation generation. J Chem Inf Model 55(12):2562–2574

    Article  CAS  Google Scholar 

  24. Taylor R et al (2014) Knowledge-based libraries for predicting the geometric preferences of druglike molecules. J Chem Inf Model 54(7):2500–2514

    Article  CAS  Google Scholar 

  25. Cole J et al (2016) Knowledge-based optimization of molecular geometries using crystal structures. J Chem Inf Model 56(4):652–661

    Article  CAS  Google Scholar 

  26. Hawkins PCD et al (2010) Conformer generation with OMEGA: algorithm and validation using high quality structures from the Protein Databank and Cambridge Structural Database. J Chem Inf Model 50(4):572–584

    Article  CAS  Google Scholar 

  27. Hawkins PCD, Nicholls A (2012) Conformer generation with OMEGA: learning from the data set and the analysis of failures. J Chem Inf Model 52(11):2919–2936

    Article  CAS  Google Scholar 

  28. Alzate-Morales JH et al (2007) A computational study of the protein-ligand interactions in CDK2 inhibitors: using quantum mechanics/molecular mechanics interaction energy as a predictor of the biological activity. Biophys J 92(2):430–439

    Article  CAS  Google Scholar 

  29. Moraca F et al (2016) Computational evaluation of HIV‑1 gp120 conformations of soluble trimeric gp140 structures as targets for de novo docking of first and second-generation small-molecule CD4 mimics. J Chem Inf Model 56(10):2069–2079

    Article  CAS  Google Scholar 

  30. Foloppe N, Chen I-J (2016) Towards understanding the unbound state of drug compounds: implications for the intramolecular reorganization energy upon binding. Bioorg Med Chem 24(10):2159–2189

    Article  CAS  Google Scholar 

  31. Perola E, Charifson PS (2004) Conformational analysis of drug-like molecules bound to proteins: an extensive study of ligand reorganization upon binding. J Med Chem 47(10):2499–2510

    Article  CAS  Google Scholar 

  32. Butler KT, Luque JF, Barril X (2009) Toward accurate relative energy predictions of the bioactive conformation of drugs. J Comput Chem 30(4):601–610

    Article  CAS  Google Scholar 

  33. Avgy-David HH, Senderowitz H (2015) Toward focusing conformational ensembles on bioactive conformations: a molecular mechanics/quantum mechanics study. J Chem Inf Model 55(10):2154–2167

    Article  CAS  Google Scholar 

  34. Juarez-Jiminez J et al (2015) Assessing the suitability of the multilevel strategy for the conformational analysis of small ligands. J Phys Chem B 119(3):1164–1172

    Article  Google Scholar 

  35. Diller DJ, Merz KM Jr. (2002) Can we separate active from inactive conformations?. J Comput Aided Mol Des 16(2):105–112

    Article  CAS  Google Scholar 

  36. Auer J, Bajorath J (2008) Distinguishing between bioactive and modeled compound conformations through mining of emerging chemical patterns. J Chem Inf Model 48(9):1747–1753

    Article  CAS  Google Scholar 

  37. Musafia B, Senderowitz H (2009) Bioactive conformational biasing: a new method for focusing conformational ensembles on bioactive-like conformers. J Chem Inf Model 49(11):2469–2480

    Article  CAS  Google Scholar 

  38. Charifson PS et al (1999) Consensus scoring: a method for obtaining improved hit rates from docking databases of three-dimensional structures into proteins. J Med Chem 42(25):5100–5109

    Article  CAS  Google Scholar 

  39. Molecular Networks GmbH, CORINA Classic, version 4.1.0.2017

  40. Sadowski J, Gasteiger J (1993) From atoms and bonds to three-dimensional atomic coordinates: automatic model builders. Chem Rev 93(7):2567–2581

    Article  CAS  Google Scholar 

  41. Veber DF et al (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45(12):2615–2623

    Article  CAS  Google Scholar 

  42. Berman HM et al (2000) The protein data bank. Nucleic Acids Res 28(1):235–242

    Article  CAS  Google Scholar 

  43. Wojciechowski M, Lesyng B (2004) Generalized Born model: analysis, refinement and applications to proteins. J Phys Chem B 108(47):18368–18376

    Article  CAS  Google Scholar 

  44. ChemAxon. Available from http://www.chemaxon.com

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Habgood.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habgood, M. Bioactive focus in conformational ensembles: a pluralistic approach. J Comput Aided Mol Des 31, 1073–1083 (2017). https://doi.org/10.1007/s10822-017-0089-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-017-0089-3

Keywords

Navigation