Skip to main content
Log in

Atomistic computer simulations on multi-loaded PAMAM dendrimers: a comparison of amine- and hydroxyl-terminated dendrimers

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Poly(amidoamine) (PAMAM) dendrimers have been extensively studied as delivery vectors in biomedical applications. A limited number of molecular dynamics (MD) simulation studies have investigated the effect of surface chemistry on therapeutic molecules loading, with the aim of providing insights for biocompatibility improvement and increase in drug loading capacity of PAMAM dendrimers. In this work, fully atomistic MD simulations were employed to study the association of 5-Fluorouracil (5-FU) with amine (NH2)- and hydroxyl (OH)-terminated PAMAM dendrimers of generations 3 and 4 (G3 and G4). MD results show a 1:12, 1:1, 1:27, and 1:4 stoichiometry, respectively, for G3NH2-FU, G3OH-FU, G4NH2-FU, and G4OH-FU complexes, which is in good agreement with the isothermal titration calorimetry results. The results obtained showed that NH2-terminated dendrimers assume segmented open structures with large cavities and more drug molecules can encapsulate inside the dendritic cavities of amine terminated dendrimers. However, OH-terminated have a densely packed structure and therefore, 5-FU drug molecules are more stable to locate close to the surface of the dendrimers. Intermolecular hydrogen bonding analysis showed that 5-FU drug molecules have more tendency to form hydrogen bonds with terminal monomers of OH-terminated dendrimers, while in NH2-terminated these occur both in the inner region and the surface. Furthermore, MM-PBSA analysis revealed that van der Waals and electrostatic energies are both important to stabilize the complexes. We found that drug molecules are distributed uniformly inside the amine and hydroxyl terminated dendrimers and therefore, both dendrimers are promising candidates as drug delivery systems for 5-FU drug molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sawant RR, Torchilin VP (2010) Liposomes as ‘smart’ pharmaceutical nanocarriers. Soft Matter 6(17):4026–4044

    Article  CAS  Google Scholar 

  2. Peretz S, Regev O (2012) Carbon nanotubes as nanocarriers in medicine. Curr Opin Colloid Interface Sci 17(6):360–368

    Article  CAS  Google Scholar 

  3. Elsabahy M, Wooley KL (2012) Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev 41(7):2545–2561

    Article  CAS  Google Scholar 

  4. Kesharwani P, Jain K, Jain NK (2014) Dendrimer as nanocarrier for drug delivery. Prog Polym Sci 39(2):268–307

    Article  CAS  Google Scholar 

  5. Tomalia DA (2005) Birth of a new macromolecular architecture: dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry. Prog Polym Sci 30(3):294–324

    Article  CAS  Google Scholar 

  6. Jain V, Bharatam PV (2014) Pharmacoinformatic approaches to understand complexation of dendrimeric nanoparticles with drugs. Nanoscale 6(5):2476–2501

    Article  CAS  Google Scholar 

  7. Cakara D, Kleimann J, Borkovec M (2003) Microscopic protonation equilibria of poly (amidoamine) dendrimers from macroscopic titrations. Macromolecules 36(11):4201–4207

    Article  CAS  Google Scholar 

  8. Winnicka K, Bielawski K, Rusak M, Bielawska A (2009) The effect of generation 2 and 3 poly (amidoamine) dendrimers on viability of human breast cancer cells. J Health Sci 55(2):169–177

    Article  CAS  Google Scholar 

  9. Fischer D, Li Y, Ahlemeyer B, Krieglstein J, Kissel T (2003) In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials 24(7):1121–1131

    Article  CAS  Google Scholar 

  10. Hong S, Leroueil PR, Janus EK, Peters JL, Kober M-M, Islam MT, Orr BG, Baker JR Jr, Banaszak Holl MM (2006) Interaction of polycationic polymers with supported lipid bilayers and cells: nanoscale hole formation and enhanced membrane permeability. Bioconjug Chem 17(3):728–734

    Article  CAS  Google Scholar 

  11. Leroueil PR, Berry SA, Duthie K, Han G, Rotello VM, McNerny DQ, Baker JR, Orr BG, Banaszak Holl MM (2008) Wide varieties of cationic nanoparticles induce defects in supported lipid bilayers. Nano Lett 8(2):420–424

    Article  CAS  Google Scholar 

  12. Jain K, Kesharwani P, Gupta U, Jain N (2010) Dendrimer toxicity: let’s meet the challenge. Int J Pharma 394(1):122–142

    Article  CAS  Google Scholar 

  13. Svenson S (2009) Dendrimers as versatile platform in drug delivery applications. Eur J Pharm Biopharm 71(3):445–462

    Article  CAS  Google Scholar 

  14. Cheng Y, Xu Z, Ma M, Xu T (2008) Dendrimers as drug carriers: applications in different routes of drug administration. J Pharm Sci 97(1):123–143

    Article  CAS  Google Scholar 

  15. Duncan R, Izzo L (2005) Dendrimer biocompatibility and toxicity. Adv Drug Deliv Rev 57(15):2215–2237

    Article  CAS  Google Scholar 

  16. Paleos CM, Tsiourvas D, Sideratou Z (2007) Molecular engineering of dendritic polymers and their application as drug and gene delivery systems. Mol Pharm 4(2):169–188

    Article  CAS  Google Scholar 

  17. Bielski ER, Zhong Q, Brown M, da Rocha SR (2015) Effect of the conjugation density of triphenylphosphonium cation on the mitochondrial targeting of poly (amidoamine) dendrimers. Mol Pharm 12(8):3043–3053

    Article  CAS  Google Scholar 

  18. Zhong Q, Bielski ER, Rodrigues LS, Brown MR, Reineke JJ, da Rocha SR (2016) Conjugation to poly (amidoamine) dendrimers and pulmonary delivery reduce cardiac accumulation and enhance antitumor activity of doxorubicin in lung metastasis. Mol Pharm 13(7):2363–2375

    Article  CAS  Google Scholar 

  19. Singh P, Gupta U, Asthana A, Jain NK (2008) Folate and folate—PEG—PAMAM Dendrimers: synthesis, characterization, and targeted anticancer drug delivery potential in tumor bearing mice. Bioconjug Chem 19(11):2239–2252

    Article  CAS  Google Scholar 

  20. Patri AK, Kukowska-Latallo JF, Baker JR (2005) Targeted drug delivery with dendrimers: comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex. Adv Drug Deliv Rev 57(15):2203–2214

    Article  CAS  Google Scholar 

  21. Tomalia DA, Reyna L, Svenson S (2007) Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging. Portland Press Limited, London

    Google Scholar 

  22. Han M, Chen P, Yang X (2005) Molecular dynamics simulation of PAMAM dendrimer in aqueous solution. Polymer 46(10):3481–3488

    Article  CAS  Google Scholar 

  23. Jain V, Maingi V, Maiti PK, Bharatam PV (2013) Molecular dynamics simulations of PPI dendrimer–drug complexes. Soft Matter 9(28):6482–6496

    Article  CAS  Google Scholar 

  24. Vergara-Jaque A, Comer J, Monsalve L, González-Nilo FD, Sandoval C (2013) Computationally efficient methodology for atomic-level characterization of dendrimer–drug complexes: a comparison of amine-and acetyl-terminated PAMAM. J Phys Chem B 117(22):6801–6813

    Article  CAS  Google Scholar 

  25. Maingi V, Kumar MVS, Maiti PK (2012) PAMAM dendrimer–drug interactions: effect of pH on the binding and release pattern. J Phys Chem B 116(14):4370–4376

    Article  CAS  Google Scholar 

  26. Shi X, Lee I, Chen X, Shen M, Xiao S, Zhu M, Baker JR, Wang SH (2010) Influence of dendrimer surface charge on the bioactivity of 2-methoxyestradiol complexed with dendrimers. Soft Matter 6(11):2539–2545

    Article  CAS  Google Scholar 

  27. Topp A, Bauer BJ, Tomalia DA, Amis EJ (1999) Effect of solvent quality on the molecular dimensions of PAMAM dendrimers. Macromolecules 32(21):7232–7237

    Article  CAS  Google Scholar 

  28. Avila-Salas FN, Sandoval C, Caballero J, Guiñez-Molinos S, Santos LS, Cachau RE, González-Nilo FD (2012) Study of interaction energies between the PAMAM dendrimer and nonsteroidal anti-inflammatory drug using a distributed computational strategy and experimental analysis by ESI-MS/MS. J Phys Chem B 116(7):2031–2039

    Article  CAS  Google Scholar 

  29. Tanis I, Karatasos K (2009) Association of a weakly acidic anti-inflammatory drug (ibuprofen) with a poly (amidoamine) dendrimer as studied by molecular dynamics simulations. J Phys Chem B 113(31):10984–10993

    Article  CAS  Google Scholar 

  30. Posocco P, Ferrone M, Fermeglia M, Pricl S (2007) Binding at the core. Computational study of structural and ligand binding properties of naphthyridine-based dendrimers. Macromolecules 40(6):2257–2266

    Article  CAS  Google Scholar 

  31. Ivanov AA, Jacobson KA (2008) Molecular modeling of a PAMAM-CGS21680 dendrimer bound to an A 2A adenosine receptor homodimer. Bioorg Med Chem Lett 18(15):4312–4315

    Article  CAS  Google Scholar 

  32. Evangelista-Lara A, Guadarrama P (2005) Theoretical evaluation of the nanocarrier properties of two families of functionalized dendrimers. Int J Quantum Chem 103(4):460–470

    Article  CAS  Google Scholar 

  33. Soto-Castro D, Evangelista-Lara A, Guadarrama P (2006) Theoretical design of dendrimeric fractal patterns for the encapsulation of a family of drugs: salicylanilides. Tetrahedron 62(51):12116–12125

    Article  CAS  Google Scholar 

  34. Badalkhani-Khamseh F, Bahrami A, Ebrahim-Habibi A, Hadipour NL (2017) Complexation of nicotinic acid with first generation poly (amidoamine) dendrimers: a microscopic view from density functional theory. Chem Phys Lett 684:103–112

    Article  CAS  Google Scholar 

  35. Caballero J, Poblete H, Navarro C, Alzate-Morales JH (2013) Association of nicotinic acid with a poly (amidoamine) dendrimer studied by molecular dynamics simulations. J Mol Graph Model 39:71–78

    Article  CAS  Google Scholar 

  36. Yang L, da Rocha SR (2014) PEGylated, NH2-terminated PAMAM dendrimers: a microscopic view from atomistic computer simulations. Mol Pharm 11(5):1459–1470

    Article  CAS  Google Scholar 

  37. Schramm OG, López-Cortés X, Santos LS, Laurie VF, Nilo FDG, Krolik M, Fischer R, Di Fiore S (2014) pH-dependent nano-capturing of tartaric acid using dendrimers. Soft Matter 10(4):600–608

    Article  CAS  Google Scholar 

  38. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1:19–25

    Article  Google Scholar 

  39. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38

    Article  CAS  Google Scholar 

  40. Dennington R, Keith T, Millam J (2009) GaussView, version 5. Semichem Inc, Shawnee

    Google Scholar 

  41. Niu Y, Sun L, Crooks RM (2003) Determination of the intrinsic proton binding constants for poly (amidoamine) dendrimers via potentiometric pH titration. Macromolecules 36(15):5725–5731

    Article  CAS  Google Scholar 

  42. Diallo MS, Christie S, Swaminathan P, Balogh L, Shi X, Um W, Papelis C, Goddard WA, Johnson JH (2004) Dendritic chelating agents. 1. Cu (II) binding to ethylene diamine core poly (amidoamine) dendrimers in aqueous solutions. Langmuir 20(7):2640–2651

    Article  CAS  Google Scholar 

  43. Pande S, Crooks RM (2011) Analysis of poly (amidoamine) dendrimer structure by UV–Vis spectroscopy. Langmuir 27(15):9609–9613

    Article  CAS  Google Scholar 

  44. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 65(3):712–725

    Article  CAS  Google Scholar 

  45. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S (1993) General atomic and molecular electronic structure system. J Comput Chem 14(11):1347–1363

    Article  CAS  Google Scholar 

  46. Vanquelef E, Simon S, Marquant G, Garcia E, Klimerak G, Delepine JC, Cieplak P, Dupradeau F-Y (2011) RED Server: a web service for deriving RESP and ESP charges and building force field libraries for new molecules and molecular fragments. Nucl Acids Res 39(suppl_2):W511–W517

    Article  CAS  Google Scholar 

  47. Buczkowski A, Waliszewski D, Urbaniak P, Palecz B (2016) Study of the interactions of PAMAM G3-NH 2 and G3-OH dendrimers with 5-fluorouracil in aqueous solutions. Int J Pharm 505(1):1–13

    Article  CAS  Google Scholar 

  48. Buczkowski A, Urbaniak P, Palecz B (2012) Thermochemical and spectroscopic studies on the supramolecular complex of PAMAM-NH 2 G4 dendrimer and 5-fluorouracil in aqueous solution. Int J Pharm 428(1):178–182

    Article  CAS  Google Scholar 

  49. Buczkowski A, Urbaniak P, Piekarski H, Palecz B (2017) Spectroscopic and calorimetric studies on the interaction between PAMAM G4-OH and 5-fluorouracil in aqueous solutions. Spectrochim Acta Part A 171:401–405

    Article  CAS  Google Scholar 

  50. Kumari R, Kumar R, Consortium OSDD, Lynn A (2014) g_mmpbsa A GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inform Model 54(7):1951–1962

    Article  CAS  Google Scholar 

  51. Jones CF, Campbell RA, Franks Z, Gibson CC, Thiagarajan G, Vieira-de-Abreu A, Sukavaneshvar S, Mohammad SF, Li DY, Ghandehari H (2012) Cationic PAMAM dendrimers disrupt key platelet functions. Mol Pharm 9(6):1599–1611

    Article  CAS  Google Scholar 

  52. Albertazzi L, Gherardini L, Brondi M, Sulis Sato S, Bifone A, Pizzorusso T, Ratto GM, Bardi G (2012) In vivo distribution and toxicity of PAMAM dendrimers in the central nervous system depend on their surface chemistry. Mol Pharm 10(1):249–260

    Article  Google Scholar 

  53. Liu Y, Bryantsev VS, Diallo MS, Goddard Iii WA (2009) PAMAM dendrimers undergo pH responsive conformational changes without swelling. J Am Chem Soc 131(8):2798–2799

    Article  CAS  Google Scholar 

  54. Porcar L, Liu Y, Verduzco R, Hong K, Butler PD, Magid LJ, Smith GS, Chen W-R (2008) Structural investigation of PAMAM dendrimers in aqueous solutions using small-angle neutron scattering: effect of generation. J Phys Chem B 112(47):14772–14778

    Article  CAS  Google Scholar 

  55. Prosa TJ, Bauer BJ, Amis EJ, Tomalia DA, Scherrenberg R (1997) A SAXS study of the internal structure of dendritic polymer systems. J Polym Sci Part B 35(17):2913–2924

    Article  CAS  Google Scholar 

  56. Rathgeber S, Monkenbusch M, Kreitschmann M, Urban V, Brulet A (2002) Dynamics of star-burst dendrimers in solution in relation to their structural properties. J Chem Phys 117(8):4047–4062

    Article  CAS  Google Scholar 

  57. Prosa TJ, Bauer BJ, Amis EJ (2001) From stars to spheres: a SAXS analysis of dilute dendrimer solutions. Macromolecules 34(14):4897–4906

    Article  CAS  Google Scholar 

  58. Lee H, Larson RG (2011) Effects of PEGylation on the size and internal structure of dendrimers: self-penetration of long PEG chains into the dendrimer core. Macromolecules 44(7):2291–2298

    Article  CAS  Google Scholar 

  59. Lee H, Larson RG (2006) Molecular dynamics simulations of PAMAM dendrimer-induced pore formation in DPPC bilayers with a coarse-grained model. J Phys Chem B 110(37):18204–18211

    Article  CAS  Google Scholar 

  60. Maingi V, Jain V, Bharatam PV, Maiti PK (2012) Dendrimer building toolkit: model building and characterization of various dendrimer architectures. J Comput Chem 33(25):1997–2011

    Article  CAS  Google Scholar 

  61. Singh BN (2005) A quantitative approach to probe the dependence and correlation of food-effect with aqueous solubility, dose/solubility ratio, and partition coefficient (Log P) for orally active drugs administered as immediate-release formulations. Drug Develop Res 65(2):55–75

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasser L. Hadipour.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1449 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badalkhani-Khamseh, F., Ebrahim-Habibi, A. & Hadipour, N.L. Atomistic computer simulations on multi-loaded PAMAM dendrimers: a comparison of amine- and hydroxyl-terminated dendrimers. J Comput Aided Mol Des 31, 1097–1111 (2017). https://doi.org/10.1007/s10822-017-0091-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-017-0091-9

Keywords

Navigation