Skip to main content

Advertisement

Log in

Design of a tripartite network for the prediction of drug targets

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Drug-target networks have aided in many target prediction studies aiming at drug repurposing or the analysis of side effects. Conventional drug-target networks are bipartite. They contain two different types of nodes representing drugs and targets, respectively, and edges indicating pairwise drug-target interactions. In this work, we introduce a tripartite network consisting of drugs, other bioactive compounds, and targets from different sources. On the basis of analog relationships captured in the network and so-called neighbor targets of drugs, new drug targets can be inferred. The tripartite network was found to have a stable structure and simulated network growth was accompanied by a steady increase in assortativity, reflecting increasing correlation between degrees of connected nodes leading to even network connectivity. Local drug environments in the tripartite network typically contained neighbor targets and revealed interesting drug-compound-target relationships for further analysis. Candidate targets were prioritized. The tripartite network design extends standard drug-target networks and provides additional opportunities for drug target prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Paolini GV, Shapland RH, van Hoorn WP, Mason JS, Hopkins AL (2006) Global mapping of pharmacological space. Nat Biotechnol 24:805–815

    Article  CAS  Google Scholar 

  2. Boran AD, Iyengar R (2010) Systems approaches to polypharmacology and drug discovery. Curr Opin Drug Discov Devel 13:297–309

    CAS  Google Scholar 

  3. Rask-Andersen M, Almén MS, Schiöth HB (2011) Trends in the exploitation of novel drug targets. Nat Rev Drug Discov 10:579–590

    Article  CAS  Google Scholar 

  4. Bleakley K, Yamanishi Y (2009) Supervised prediction of drug–target interactions using bipartite local models. Bioinformatics 25:2397–2403

    Article  CAS  Google Scholar 

  5. Yildirim MA, Goh KI, Cusick ME, Barabási AL, Vidal M (2007) Drug-target network. Nat Biotechnol 25:1119–1126

    Article  CAS  Google Scholar 

  6. Campillos M, Kuhn M, Gavin AC, Jensen LJ, Bork P (2008) Drug target identification using side-effect similarity. Science 321:263–266

    Article  CAS  Google Scholar 

  7. Ashburn TT, Thor KB (2004) Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov 3:673–683

    Article  CAS  Google Scholar 

  8. Liu Z, Fang H, Reagan K, Xu X, Mendrick DL, Slikker W, Tong W (2013) In silico drug repositioning—what we need to know. Drug Discov Today 18:110–115

    Article  CAS  Google Scholar 

  9. Keiser MJ, Roth BL, Armbruster BN, Ernsberger P, Irwin JJ, Shoichet BK (2007) Relating protein pharmacology by ligand chemistry. Nat Biotechnol 25:197–206

    Article  CAS  Google Scholar 

  10. Hu Y, Lounkine E, Bajorath J (2014) Many approved drugs have bioactive analogs with different target annotations. AAPS J 16:847–859

    Article  CAS  Google Scholar 

  11. Yamanishi Y, Araki M, Gutteridge A, Honda W, Kanehisa M (2008) Prediction of drug–target interaction networks from the integration of chemical and genomic spaces. Bioinformatics 24:i232-i240

    Article  Google Scholar 

  12. Lapinsh M, Prusis P, Uhlén S, Wikberg JE (2005) Improved approach for proteochemometrics modeling: application to organic compound—amine G protein coupled receptor interactions. Bioinformatics 21:4289–4296

    Article  CAS  Google Scholar 

  13. Jacob L, Vert JP (2008) Protein-ligand interaction prediction: an improved chemogenomics approach. Bioinformatics 24:2149–2156

    Article  CAS  Google Scholar 

  14. Cheng F, Liu C, Jiang J, Lu W, Li W, Liu G, Zhou W, Huang J, Tang Y (2012) Prediction of drug-target interactions and drug repositioning via network-based inference. PLoS Comput Biol 8:e1002503

    Article  CAS  Google Scholar 

  15. Alaimo S, Pulvirenti A, Giugno R, Ferro A (2013) Drug–target interaction prediction through domain-tuned network-based inference. Bioinformatics 29:2004–2008

    Article  CAS  Google Scholar 

  16. Emig D, Ivliev A, Pustovalova O, Lancashire L, Bureeva S, Nikolsky Y, Bessarabova M (2013) Drug target prediction and repositioning using an integrated network-based approach. PLoS ONE 8:e60618

    Article  CAS  Google Scholar 

  17. van Laarhoven T, Nabuurs SB, Marchiori E (2011) Gaussian interaction profile kernels for predicting drug–target interaction. Bioinformatics 27:3036–3043

    Article  Google Scholar 

  18. Mei JP, Kwoh CK, Yang P, Li XL, Zheng J (2012) Drug–target interaction prediction by learning from local information and neighbors. Bioinformatics 29:238–245

    Article  Google Scholar 

  19. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, Assempour N, Iynkkaran I, Liu Y, Maciejewski A, Gale N, Wilson A, Chin L, Cummings R, Le D, Pon A, Knox C, Wilson M (2017) DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. https://doi.org/10.1093/nar/gkx1037

    Google Scholar 

  20. Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, Light Y, McGlinchey S, Michalovich D, Al-Lazikani B, Overington JP (2012) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 40(database issue):D1100–D1107

    Article  CAS  Google Scholar 

  21. Kenny PW, Sadowski J (2004) Chemoinformatics in drug discovery. In: Oprea TI (ed) Structure modification in chemical databases. Wiley, Weinheim, pp 271–285

    Google Scholar 

  22. Hussain J, Rea C (2010) Computationally efficient algorithm to identify matched molecular pairs (MMPs) in large data sets (2010). J Chem Inf Model 50:339–348

    Article  CAS  Google Scholar 

  23. Lewell XQ, Judd DB, Watson SP, Hann MM (1998) RECAP–retrosynthetic combinatorial analysis procedure: a powerful new technique for identifying privileged molecular fragments with useful applications in combinatorial chemistry. J Chem Inf Comput Sci 38:511–522

    Article  CAS  Google Scholar 

  24. de la Vega de León A, Bajorath J (2014) Matched molecular pairs derived by retrosynthetic fragmentation. Med Chem Commun 5:64–67

    Article  Google Scholar 

  25. OEChem TK version 2.0.0; OpenEye Scientific Software. Santa Fe, NM

  26. Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T (2010) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27:431–432

    Article  Google Scholar 

  27. Newman M (2010) Networks—an introduction, Oxford University Press Inc., New York

    Book  Google Scholar 

  28. Csardi G, Nepusz T (2006) The iGraph software package for complex network research. InterJ Complex Sys 1695:1–9

    Google Scholar 

  29. Maggiora GM, Shanmugasundaram V (2004) Molecular similarity measures. In: Bajorath J (ed) Chemoinformatics—concepts, methods, and tools for drug discovery. Humana Press, Totowa

    Google Scholar 

  30. Maggiora GM, Vogt M, Stumpfe D, Bajorath J (2014) Molecular similarity in medicinal chemistry. J Med Chem 57:3186–3204

    Article  CAS  Google Scholar 

  31. Wang L, Bao SH, Pan PP, Xia MM, Chen MC, Liang BQ, Dai DP, Cai JP, Hu GX (2015) Effect of CYP2C9 genetic polymorphism on the metabolism of flurbiprofen in vitro. Drug Dev Ind Pharm 41:1363–1367

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the OpenEye Scientific Software, Inc., for providing a free academic license of the OpenEye chemistry toolkit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Bajorath.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kunimoto, R., Bajorath, J. Design of a tripartite network for the prediction of drug targets. J Comput Aided Mol Des 32, 321–330 (2018). https://doi.org/10.1007/s10822-018-0098-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-018-0098-x

Keywords

Navigation