Skip to main content

Advertisement

Log in

Binding free energy calculations to rationalize the interactions of huprines with acetylcholinesterase

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

In the present study, the binding free energy of a family of huprines with acetylcholinesterase (AChE) is calculated by means of the free energy perturbation method, based on hybrid quantum mechanics and molecular mechanics potentials. Binding free energy calculations and the analysis of the geometrical parameters highlight the importance of the stereochemistry of huprines in AChE inhibition. Binding isotope effects are calculated to unravel the interactions between ligands and the gorge of AChE. New chemical insights are provided to explain and rationalize the experimental results. A good correlation with the experimental data is found for a family of inhibitors with moderate differences in the enzyme affinity. The analysis of the geometrical parameters and interaction energy per residue reveals that Asp72, Glu199, and His440 contribute significantly to the network of interactions between active site residues, which stabilize the inhibitors in the gorge. It seems that a cooperative effect of the residues of the gorge determines the affinity of the enzyme for these inhibitors, where Asp72, Glu199, and His440 make a prominent contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bossy-Wetzel E, Schwarzenbacher R, Lipton SA (2004) Molecular pathways to neurodegeneration. Nat Med 10(7):S2–S9

    Article  Google Scholar 

  2. Bartus R, Dean R, Beer B, Lippa A (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217(4558):408–414

    Article  CAS  Google Scholar 

  3. Dunnett SB, Fibiger HC (1993) Role of forebrain cholinergic systems in learning and memory—relevance to the cognitive deficits of aging and alzheimer dementia. In: Cuello AC (ed) Cholinergic function and dysfunction, progress in brain research, vol 98. Elsevier Science Publ B V, Amsterdam, pp 413–420

    Chapter  Google Scholar 

  4. Weinstock M (1997) Possible role of the cholinergic system and disease models. J Neural Transm-Suppl 49:93–102

    CAS  Google Scholar 

  5. Rang HP, Dale MM, Ritter JM, Flower RJ, Henderson G (2012) Rang & Dale’s pharmacology, 7th edn. Elsevier, Edinburgh

    Google Scholar 

  6. Bar-On P, Millard CB, Harel M, Dvir H, Enz A, Sussman JL, Silman I (2002) Kinetic and structural studies on the interaction of cholinesterases with the anti-alzheimer drug rivastigmine. Biochemistry 41(11):3555–3564

    Article  CAS  Google Scholar 

  7. Harel M, Schalk I, Ehretsabatier L, Bouet F, Goeldner M, Hirth C, Axelsen PH, Silman I, Sussman JL (1993) Quaternary ligand-binding to aromatic residues in the active-site gorge of acetylcholinesterase. Proc Natl Acad Sci USA 90(19):9031–9035

    Article  CAS  Google Scholar 

  8. Kryger G, Silman I, Sussman JL (1999) Structure of acetylcholinesterase complexed with E2020 (Aricept (R)): implications for the design of new anti-Alzheimer drugs. Structure 7(3):297–307

    Article  CAS  Google Scholar 

  9. Greenblatt HM, Kryger G, Lewis T, Silman I, Sussman JL (1999) Structure of acetylcholinesterase complexed with (-)-galantamine at 2.3 angstrom resolution. FEBS Lett 463(3):321–326

    Article  CAS  Google Scholar 

  10. Gilson MK, Zhou HX (2007) Calculation of protein-ligand binding affinities. In: Annual review of biophysics and biomolecular structure, vol 36. Annual Reviews, Palo Alto, pp 21–42

    Google Scholar 

  11. Sham YY, Chu ZT, Tao H, Warshel A (2000) Examining methods for calculations of binding free energies: LRA, LIE, PDLD-LRA, and PDLD/S-LRA calculations of ligands binding to an HIV protease. Proteins-Struct Funct Genet 39(4):393–407

    Article  CAS  Google Scholar 

  12. Hansen N, van Gunsteren WF (2014) Practical aspects of free-energy calculations: a review. J Chem Theory Comput 10(7):2632–2647

    Article  CAS  Google Scholar 

  13. Wlodek ST, Antosiewicz J, McCammon JA, Straatsma TP, Gilson MK, Briggs JM (1996) Binding of tacrine and 6-chlorotacrine by acetylcholinesterase. Biopolymers 38(1):109–117

    Article  CAS  Google Scholar 

  14. Camps P, El Achab R, Görbig DM, Morral J, Muñoz-Torrero D, Badia A, Baños JE, Vivas NM, Barril X, Orozco M, Luque FJ (1999) Synthesis, in vitro pharmacology, and molecular modelling of very potent tacrine-huperzine A hybrids as acetylcholinesterase inhibitors of potential interest for the treatment of alzheimer’s disease. J Med Chem 42:3227–3242

    Article  CAS  Google Scholar 

  15. Barril X, Orozco M, Luque FJ (1999) Predicting relative binding free energies of tacrine-huperzine A hybrids as inhibitors of acetylcholinesterase. J Med Chem 42(25):5110–5119

    Article  CAS  Google Scholar 

  16. Camps P, El Achab R, Morral J, Muñoz-Torrero D, Badia A, Baños JE, Vivas NM, Barril X, Orozco M, Luque FJ (2000) New tacrine-huperzine A hybrids (huprines): highly potent tight-binding acetylcholinesterase inhibitors of interest for the treatment of alzheimer’s disease. J Med Chem 43(24):4657–4666

    Article  CAS  Google Scholar 

  17. Camps P, Gomez E, Muñoz-Torrero D, Badia A, Vivas NM, Barril X, Orozco M, Luque FJ (2001) Synthesis, in vitro pharmacology, and molecular modeling of syn-huprines as acetylcholinesterase inhibitors. J Med Chem 44(26):4733–4736

    Article  CAS  Google Scholar 

  18. Barril X, Gelpi JL, Lopez JM, Orozco M, Luque FJ (2001) How accurate can molecular dynamics/linear response and Poisson-Boltzmann/solvent accessible surface calculations be for predicting relative binding affinities? acetylcholinesterase huprine inhibitors as a test case. Theor Chem Acc 106(1–2):2–9

    Article  CAS  Google Scholar 

  19. Dvir H, Wong DM, Harel M, Barril X, Orozco M, Luque FJ, Muñoz-Torrero D, Camps P, Rosenberry TL, Silman I, Sussman JL (2002) 3D structure of Torpedo californica acetylcholinesterase complexed with huprine X at 2.1 Å resolution: kinetic and molecular dynamic correlates. Biochemistry 41(9):2970–2981

    Article  CAS  Google Scholar 

  20. Camps P, Gomez E, Muñoz-Torrero D, Badia A, Clos MV, Curutchet C, Muñoz-Muriedas J, Luque FJ (2006) Binding of 13-amidohuprines to acetylcholinesterase: exploring the ligand-induced conformational change of the Gly117-Gly118 peptide bond in the oxyanion hole. J Med Chem 49(23):6833–6840

    Article  CAS  Google Scholar 

  21. Viayna E, Gomez T, Galdeano C, Ramirez L, Ratia M, Badia A, Clos MV, Verdaguer E, Junyent F, Camins A, Pallas M, Bartolini M, Mancini F, Andrisano V, Arce MP, Rodriguez-Franco MI, Bidon-Chanal A, Luque FJ, Camps P, Muñoz-Torrero D (2010) Novel huprine derivatives with inhibitory activity toward beta-amyloid aggregation and formation as disease-modifying anti-alzheimer drug candidates. ChemMedChem 5(11):1855–1870

    Article  CAS  Google Scholar 

  22. Nascimento ECM, Oliva M, Swiderek K, Martins JBL, Andrés J (2017) Binding analysis of some classical acetylcholinesterase inhibitors: insights for a rational design using free energy perturbation method calculations with QM/MM MD simulations. J Chem Inf Model 57:958–976

    Article  CAS  Google Scholar 

  23. Camps P, Cusack B, Mallender WD, Achab RE, Morral J, Muñoz-Torrero D, Rosenberry TL (2000) Huprine X is a novel high-affinity inhibitor of acetylcholinesterase that is of interest for treatment of alzheimer’s disease. Mol Pharmacol 57(2):409–417

    CAS  Google Scholar 

  24. Muñoz-Torrero D, Camps P (2008) Huprines for alzheimer’s disease drug development. Expert Opin Drug Discov 3(1):65–81

    Article  Google Scholar 

  25. Roman S, Vivas NM, Badia A, Clos MV (2002) Interaction of a new potent anticholinesterasic compound (+/-) huprine X with muscarinic receptors in rat brain. Neurosci Lett 325(2):103–106

    Article  CAS  Google Scholar 

  26. Roman S, Badia A, Camps P, Clos MV (2004) Potentiation effects of (+/-)huprine X, a new acetylcholinesterase inhibitor, on nicotinic receptors in rat cortical synaptosomes. Neuropharmacology 46(1):95–102

    Article  CAS  Google Scholar 

  27. Ratia M, Gimenez-Llort L, Camps P, Muñoz-Torrero D, Perez B, Clos MV, Badia A (2013) Huprine X and huperzine A improve cognition and regulate some neurochemical processes related with alzheimer’s disease in triple transgenic mice (3xTg-AD). Neurodegener Dis 11(3):129–140

    Article  CAS  Google Scholar 

  28. Shirts MR, Mobley DL, Chodera JD (2007) Alchemical free energy calculations: ready for prime time? Annu Rep Comput Chem 3:41–59

    Article  CAS  Google Scholar 

  29. Wang L, Wu Y, Deng Y, Kim B, Pierce L, Krilov G, Lupyan D, Robinson S, Dahlgren MK, Greenwood J, Romero DL, Masse C, Knight JL, Steinbrecher T, Beuming T, Damm W, Harder E, Sherman W, Brewer M, Wester R, Murcko M, Frye L, Farid R, Lin T, Mobley DL, Jorgensen WL, Berne BJ, Friesner RA, Abel R (2015) Accurate and reliable prediction of relative ligand binding potency in prospective drug discovery by way of a modern free-energy calculation protocol and force field. J Am Chem Soc 137(7):2695–2703

    Article  CAS  Google Scholar 

  30. Schramm VL (2007) Binding isotope effects: boon and bane. Curr Opin Chem Biol 11(5):529–536

    Article  CAS  Google Scholar 

  31. Holm L, Park J (2000) DaliLite workbench for protein structure comparison. Bioinformatics 16(6):566–567

    Article  CAS  Google Scholar 

  32. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791

    Article  CAS  Google Scholar 

  33. Field MJ (1999) A practical introduction to the simulation of molecular systems. Cambridge University Press, Cambridge

    Google Scholar 

  34. Field MJ, Albe M, Bret C, Proust-de Martin F, Thomas A (2000) The dynamo library for molecular simulations using hybrid quantum mechanical and molecular mechanical potentials. J Comput Chem 21(12):1088–1100

    Article  CAS  Google Scholar 

  35. Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. J Am Chem Soc 107(13):3902–3909

    Article  CAS  Google Scholar 

  36. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118(45):11225–11236

    Article  CAS  Google Scholar 

  37. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935

    Article  CAS  Google Scholar 

  38. Świderek K, Martí S, Moliner V (2012) Theoretical studies of HIV-1 reverse transcriptase inhibition. Phys Chem Chem Phys 14(36):12614–12624

    Article  Google Scholar 

  39. Krzemińska A, Paneth P, Moliner V, Świderek K (2015) Binding isotope effects as a tool for distinguishing hydrophobic and hydrophilic binding sites of HIV-1 RT. J Phys Chem B 119(3):917–927

    Article  Google Scholar 

  40. Koellner G, Kryger G, Millard CB, Silman I, Sussman JL, Steiner T (2000) Active-site gorge and buried water molecules in crystal structures of acetylcholinesterase from Torpedo californica. J Mol Biol 296(2):713–735

    Article  CAS  Google Scholar 

  41. Henchman RH, McCammon JA (2002) Structural and dynamic properties of water around acetylcholinesterase. Protein Sci 11(9):2080–2090

    Article  CAS  Google Scholar 

  42. Henchman RH, Tai KS, Shen TY, McCammon JA (2002) Properties of water molecules in the active site gorge of acetylcholinesterase from computer simulation. Biophys J 82(5):2671–2682

    Article  CAS  Google Scholar 

  43. Ramos ASF, Techert S (2005) Influence of the water structure on the acetylcholinesterase efficiency. Biophys J 89(3):1990–2003

    Article  CAS  Google Scholar 

  44. Martín-Santamaría S, Muñoz-Muriedas J, Luque FJ, Gago F (2004) Modulation of binding strength in several classes of active site inhibitors of acetylcholinesterase studied by comparative binding energy analysis. J Med Chem 47(18):4471–4482

    Article  Google Scholar 

Download references

Acknowledgements

We thank Prof P. Camps, Prof. F.J. Luque, and Prof. D. Muñoz-Torrero for interesting comments on the paper. The authors acknowledge the financial support of the following agencies: Generalitat Valenciana for PrometeoII/2014/022, Ministerio de Economia y Competitividad, project CTQ2015-65207-P, Universitat Jaume I for project UJI-B2016-25. E.C.M. Nascimento is grateful to the Generalitat Valencia for Santiago Grisolia program 2011/040. We also wish to thank the Servei d’Informática, Universitat Jaume I, for the generous allocation of computer time.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mónica Oliva or Juan Andrés.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 35579 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nascimento, É.C.M., Oliva, M. & Andrés, J. Binding free energy calculations to rationalize the interactions of huprines with acetylcholinesterase. J Comput Aided Mol Des 32, 607–622 (2018). https://doi.org/10.1007/s10822-018-0114-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-018-0114-1

Keywords

Navigation