Skip to main content
Log in

Uncovering abnormal changes in logP after fluorination using molecular dynamics simulations

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The fluorination-induced changes in the logP (1-octanol/water partition coefficient) of ligands were examined by molecular dynamics simulations. The protocol and force field parameters were first evaluated by calculating the logP values for n-alkanes, and their monofluorinated and monochlorinated analogs. Then, the logP values of several test sets (1-butanol, 3-propyl-1H-indole, and analogs fluorinated at the terminal methyl group) were calculated. The calculated results agree well with experiment, and the root mean square error values are 0.61 and 0.68 log units for the GAFF and GAFF2 force fields, respectively. Finally, the logP estimation was extended to a drug molecule, TAK-438, for which fluorination-induced abnormal logP reduction has been observed experimentally. This abnormal change was qualitatively reproduced by the molecular dynamics simulations. We found that the abnormal logP reduction can be mainly attributed to the effect of fluorination-induced dipole change. Our results suggest that molecular simulation is a useful strategy to predict the fluorination-induced change in logP for drug discovery applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. O’Hagan D (2010) Fluorine in health care: organofluorine containing blockbuster drugs. J Fluorine Chem 131(11):1071–1081

    Article  CAS  Google Scholar 

  2. Wang J, Sanchez-Rosello M, Acena JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H (2014) Fluorine in pharmaceutical industry: fluorine-containing drugs introduced to the market in the last decade (2001–2011). Chem Rev 114(4):2432–2506

    Article  CAS  PubMed  Google Scholar 

  3. Zhou Y, Wang J, Gu Z, Wang S, Zhu W, Acena JL, Soloshonok VA, Izawa K, Liu H (2016) Next generation of fluorine-containing pharmaceuticals, compounds currently in phase II-III clinical trials of major pharmaceutical companies: new structural trends and therapeutic areas. Chem Rev 116(2):422–518

    Article  CAS  PubMed  Google Scholar 

  4. Smart BE (2001) Fluorine substituent effects (on bioactivity). J Fluorine Chem 109(1):3–11

    Article  CAS  Google Scholar 

  5. Bohm HJ, Banner D, Bendels S, Kansy M, Kuhn B, Muller K, Obst-Sander U, Stahl M (2004) Fluorine in medicinal chemistry. ChemBioChem 5(5):637–643

    Article  CAS  PubMed  Google Scholar 

  6. Muller K, Faeh C, Diederich F (2007) Fluorine in pharmaceuticals: looking beyond intuition. Science 317(5846):1881–1886

    Article  CAS  PubMed  Google Scholar 

  7. Hagmann WK (2008) The many roles for fluorine in medicinal chemistry. J Med Chem 51(15):4359–4369

    Article  CAS  PubMed  Google Scholar 

  8. Purser S, Moore PR, Swallow S, Gouverneur V (2008) Fluorine in medicinal chemistry. Chem Soc Rev 37(2):320–330

    Article  CAS  PubMed  Google Scholar 

  9. Gillis EP, Eastman KJ, Hill MD, Donnelly DJ, Meanwell NA (2015) Applications of fluorine in medicinal chemistry. J Med Chem 58(21):8315–8359

    Article  CAS  PubMed  Google Scholar 

  10. Swallow S (2015) Fluorine in medicinal chemistry. Prog Med Chem 54:65–133

    Article  PubMed  Google Scholar 

  11. Yerien DE, Bonesi S, Postigo A (2016) Fluorination methods in drug discovery. Org Biomol Chem 14(36):8398–8427

    Article  CAS  PubMed  Google Scholar 

  12. Huchet QA, Kuhn B, Wagner B, Fischer H, Kansy M, Zimmerli D, Carreira EM, Müller K (2013) On the polarity of partially fluorinated methyl groups. J Fluorine Chem 152:119–128

    Article  CAS  Google Scholar 

  13. Huchet QA, Kuhn B, Wagner B, Kratochwil NA, Fischer H, Kansy M, Zimmerli D, Carreira EM, Muller K (2015) Fluorination patterning: a study of structural motifs that impact physicochemical properties of relevance to drug discovery. J Med Chem 58(22):9041–9060

    Article  CAS  PubMed  Google Scholar 

  14. Wuitschik G, Carreira EM, Wagner B, Fischer H, Parrilla I, Schuler F, Rogers-Evans M, Muller K (2010) Oxetanes in drug discovery: structural and synthetic insights. J Med Chem 53(8):3227–3246

    Article  CAS  PubMed  Google Scholar 

  15. Daina A, Michielin O, Zoete V (2014) iLOGP: a simple, robust, and efficient description of n-octanol/water partition coefficient for drug design using the GB/SA approach. J Chem Inform Model 54(12):3284–3301

    Article  CAS  Google Scholar 

  16. Wang R, Fu Y, Lai L (1997) A new atom-additive method for calculating partition coefficients. J Chem Inform Comput Sci 37(3):615–621

    Article  CAS  Google Scholar 

  17. Cheng T, Zhao Y, Li X, Lin F, Xu Y, Zhang X, Li Y, Wang R, Lai L (2007) Computation of octanol-water partition coefficients by guiding an additive model with knowledge. J Chem Inform Model 47(6):2140–2148

    Article  CAS  Google Scholar 

  18. Tetko IV, Tanchuk VY (2002) Application of associative neural networks for prediction of lipophilicity in ALOGPS 2.1 program. J Chem Inform Comput Sci 42(5):1136–1145

    Article  CAS  Google Scholar 

  19. Tetko IV, Bruneau P (2004) Application of ALOGPS to predict 1-octanol/water distribution coefficients, logP, and logD, of AstraZeneca in-house database. J Pharm Sci 93(12):3103–3110

    Article  CAS  PubMed  Google Scholar 

  20. Bgu J-P, Bonnet-Delpon D (2008) Bioorganic and medicinal chemistry of fluorine. Wiley, Hoboken

    Book  Google Scholar 

  21. Menear KA, Adcock C, Boulter R, Cockcroft XL, Copsey L, Cranston A, Dillon KJ, Drzewiecki J, Garman S, Gomez S, Javaid H, Kerrigan F, Knights C, Lau A, Loh VM Jr, Matthews IT, Moore S, O’Connor MJ, Smith GC, Martin NM (2008) 4-[3-(4-cyclopropanecarbonylpiperazine-1-carbonyl)-4-fluorobenzyl]-2H-phthalazin- 1-one: a novel bioavailable inhibitor of poly(ADP-ribose) polymerase-1. J Med Chem 51(20):6581–6591

    Article  CAS  PubMed  Google Scholar 

  22. Arikawa Y, Nishida H, Kurasawa O, Hasuoka A, Hirase K, Inatomi N, Hori Y, Matsukawa J, Imanishi A, Kondo M, Tarui N, Hamada T, Takagi T, Takeuchi T, Kajino M (2012) Discovery of a novel pyrrole derivative 1-[5-(2-fluorophenyl)-1-(pyridin-3-ylsulfonyl)-1H-pyrrol-3-yl]-N-methylmethanamin e fumarate (TAK-438) as a potassium-competitive acid blocker (P-CAB). J Med Chem 55(9):4446–4456

    Article  CAS  PubMed  Google Scholar 

  23. Jorgensen WL, Briggs JM, Contreras ML (1990) Relative partition coefficients for organic solutes from fluid simulations. J Phys Chem 94(4):1683–1686

    Article  CAS  Google Scholar 

  24. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25(9):1157–1174

    Article  CAS  PubMed  Google Scholar 

  25. Harder E, Damm W, Maple J, Wu C, Reboul M, Xiang JY, Wang L, Lupyan D, Dahlgren MK, Knight JL, Kaus JW, Cerutti DS, Krilov G, Jorgensen WL, Abel R, Friesner RA (2016) OPLS3: a force field providing broad coverage of drug-like small molecules and proteins. J Chem Theory Comput 12(1):281–296

    Article  CAS  PubMed  Google Scholar 

  26. Sugita Y, Okamoto Y (1999) Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett 314(1–2):141–151

    Article  CAS  Google Scholar 

  27. Okamoto Y, Kokubo H, Tanaka T (2014) Prediction of ligand binding affinity by the combination of replica-exchange method and double-decoupling method. J Chem Theory Comput 10(8):3563–3569

    Article  CAS  PubMed  Google Scholar 

  28. Steinbrecher T, Mobley DL, Case DA (2007) Nonlinear scaling schemes for Lennard-Jones interactions in free energy calculations. J Chem Phys 127(21):214108

    Article  CAS  PubMed  Google Scholar 

  29. Bannan CC, Calabro G, Kyu DY, Mobley DL (2016) Calculating partition coefficients of small molecules in octanol/water and cyclohexane/water. J Chem Theory Comput 12(8):4015–4024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kirkwood JG (1935) Statistical mechanics of fluid mixtures. J Chem Phys 3(5):300–313

    Article  CAS  Google Scholar 

  31. Chipot C, Pohorille A (2007) Free energy calculations: theory and applications in chemistry and biology. Springer, Berlin

    Book  Google Scholar 

  32. Case DA, Betz RM, Cerutti DS, Cheatham TE III, Darden TA, Duke RE, Giese TJ, Gohlke H, Goetz AW, Homeyer N, Izadi S, Janowski P, Kaus J, Kovalenko A, Lee TS, LeGrand S, Li P, Lin C, Luchko T, Luo R, Madej B, Mermelstein D, Merz KM, Monard G, Nguyen H, Nguyen HT, Omelyan I, Onufriev A, Roe DR, Roitberg A, Sagui C, Simmerling CL, Botello-Smith WM, Swails J, Walker RC, Wang J, Wolf RM, Wu X, Xiao L, Kollman PA (2016) AMBER 2016, University of California, San Francisco

    Google Scholar 

  33. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 Revision C.01. Gaussian Inc., Wallingford

    Google Scholar 

  34. Wang J, Hou T (2011) Application of molecular dynamics simulations in molecular property prediction I: density and heat of vaporization. J Chem Theory Comput 7(7):2151–2165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mobley DL, Guthrie JP (2014) FreeSolv: a database of experimental and calculated hydration free energies, with input files. J Comput Aided Mol Des 28(7):711–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Martinez L, Andrade R, Birgin EG, Martinez JM (2009) PACKMOL: a package for building initial configurations for molecular dynamics simulations. J Comput Chem 30(13):2157–2164

    Article  CAS  PubMed  Google Scholar 

  37. PubChem Identifier: CID 15981397 URL: https://pubchem.ncbi.nlm.nih.gov/compound/15981397

  38. Mobley DL, Dumont E, Chodera JD, Dill KA (2007) Comparison of charge models for fixed-charge force fields: small-molecule hydration free energies in explicit solvent. J Phys Chem B 111(9):2242–2254

    Article  CAS  PubMed  Google Scholar 

  39. Roe DR, Cheatham TE (2013) PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput 9(7):3084–3095

    Article  CAS  PubMed  Google Scholar 

  40. Haynes WM, Lide DR (2011) CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data, 92nd edn. CRC Press, Boca Raton

    Google Scholar 

  41. Garrido NM, Queimada AJ, Jorge M, Macedo EA, Economou IG (2009) 1-octanol/water partition coefficients of n-alkanes from molecular simulations of absolute solvation free energies. J Chem Theory Comput 5(9):2436–2446

    Article  CAS  PubMed  Google Scholar 

  42. Bhatnagar N, Kamath G, Chelst I, Potoff JJ (2012) Direct calculation of 1-octanol-water partition coefficients from adaptive biasing force molecular dynamics simulations. J Chem Phys 137(1):014502

    Article  CAS  PubMed  Google Scholar 

  43. Fischer NM, van Maaren PJ, Ditz JC, Yildirim A, van der Spoel D (2015) Properties of organic liquids when simulated with long-range lennard-jones interactions. J Chem Theory Comput 11(7):2938–2944

    Article  CAS  PubMed  Google Scholar 

  44. PhysProp Database (2017) http://esc.syrres.com/fatepointer/search.asp. Accessed 21 Sept 2017

  45. Mobley DL, Wymer KL, Lim NM, Guthrie JP (2014) Blind prediction of solvation free energies from the SAMPL4 challenge. J Comput Aided Mol Des 28(3):135–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bannan CC, Burley KH, Chiu M, Shirts MR, Gilson MK, Mobley DL (2016) Blind prediction of cyclohexane-water distribution coefficients from the SAMPL5 challenge. J Comput Aided Mol Des 30(11):927–944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rustenburg AS, Dancer J, Lin B. Feng J, Ortwine DF, Mobley DL, Chodera JD (2016) Measuring experimental cyclohexane–water distribution coefficients for the SAMPL5 challenge. J Comput Aided Mol Des 30(11):945–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Scott DR, Munson KB, Marcus EA, Lambrecht NWG, Sachs G (2015) The binding selectivity of vonoprazan (TAK-438) to the gastric H+,K+-ATPase. Aliment Pharmacol Ther 42(11–12):1315–1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. JChem for Office 5.12.3.966 (2013) (http://www.chemaxon.com) JChem for Office (Excel) was used for chemical database access, structure based property calculation, search and reporting

  50. Weiser J, Shenkin PS, Still WC (1999) Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO). J Comput Chem 20(2):217–230

    Article  CAS  Google Scholar 

  51. Jorgensen WL, McDonald NA, Selmi M, Rablen PR (1995) Importance of polarization for dipolar solutes in low-dielectric media: 1,2-dichloroethane and water in cyclohexane. J Am Chem Soc 117(47):11809–11810

    Article  CAS  Google Scholar 

  52. Leontyev I, Stuchebrukhov A (2011) Accounting for electronic polarization in non-polarizable force fields. Phys Chem Chem Phys 13(7):2613–2626

    Article  CAS  PubMed  Google Scholar 

  53. DeBolt SE, Kollman PA (1995) Investigation of structure, dynamics, and solvation in 1-octanol and its water-saturated solution: molecular dynamics and free-energy perturbation studies. J Am Chem Soc 117(19):5316–5340

    Article  CAS  Google Scholar 

  54. MacCallum JL, Tieleman DP (2002) Structures of neat and hydrated 1-octanol from computer simulations. J Am Chem Soc 124(50):15085–15093

    Article  CAS  PubMed  Google Scholar 

  55. Hyohdoh I, Furuichi N, Aoki T (2013) Fluorine scanning by nonselective fluorination: enhancing Raf/MEK inhibition while keeping physicochemical properties. ACS Med Chem Lett 4(11):1059–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Terufumi Takagi for carefully reading the manuscript and making valuable suggestions and comments. This study used computational resources of the HPCI system provided by the TSUBAME Grid Cluster at the Global Scientific Information and Computing Center of Tokyo Institute of Technology through the HPCI System Research Project (Project ID hp170026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hironori Kokubo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 868 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, K., Kokubo, H. Uncovering abnormal changes in logP after fluorination using molecular dynamics simulations. J Comput Aided Mol Des 33, 345–356 (2019). https://doi.org/10.1007/s10822-018-0183-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-018-0183-1

Keywords

Navigation