Skip to main content
Log in

Predicting skin permeability using the 3D-RISM-KH theory based solvation energy descriptors for a diverse class of compounds

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The state-of-the-art molecular solvation theory is used to predict skin permeability of a large set of compounds with available experimental skin permeability coefficient (logKP). Encouraging results are obtained pointing to applicability of a novel quantitative structure activity model that uses statistical physics based 3D-RISM-KH theory for solvation free energy calculations as a primary descriptor for the prediction of logKP with relative mean square error of 0.77 units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. A summary of most prominent models developed for logKP prediction is presented in Table S1 in the ESM.

  2. This is a modified SPC point charge model of water with additional LJ parameters for the hydrogens (σH = 1.1 Å, εH = 0.046 kcal/mol) to avoid convergence issues and getting correct thermodynamics in 1D-RISM-KH theory.

References

  1. Hadgraft J (2004) Eur J Pharm Biopharm 58:291–299

    Article  CAS  PubMed  Google Scholar 

  2. Jepps OG, Dancik Y, Anissimov YG, Roberts MS (2013) Adv Drug Deliv Rev 65:152–168

    Article  CAS  PubMed  Google Scholar 

  3. Barbero AM, Frasch HF (2009) Toxicol In Vitro 23:1–13

    Article  CAS  PubMed  Google Scholar 

  4. Sinkó B, Garrigues TM, Balogh GT, Nagy ZK, Tsinman O, Avdeef A, Takács-Novák K (2012) Eur J Pharm Sci 45:698–707

    Article  CAS  PubMed  Google Scholar 

  5. Barratt MD (1995) Toxicol In Vitro 9:27–37

    Article  CAS  PubMed  Google Scholar 

  6. Schulz R, Yamamoto K, Klossek A, Flesch R, Hönzke S, Rancan F, Vogt A, Blume-Peytavi U, Hedtrich S, Schäfer-Korting M, Rühl E, Netz RR (2017) Proc Natl Acad Sci USA 114:3631

    Article  CAS  PubMed  Google Scholar 

  7. Schultz TW, Cronin MTD, Walker JD, Aptula AO (2003) J Mol Struct 622:1–22

    Article  CAS  Google Scholar 

  8. Cherkasov A, Muratov EN, Fourches D, Varnek A, Baskin II, Cronin M, Dearden J, Gramatica P, Martin YC, Todeschini R, Consonni V, Kuźmin VE, Cramer R, Benigni RR, Yang C, Rathman J, Terfloth L, Gasteiger J, Richard A, Tropsha A (2014) J Med Chem 57:4977–5010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Goto S (2014) In: Ohshima H, Makino K (eds) Colloid and Interface science in pharmaceutical research and development. Elsevier, Amsterdam, pp 121–129

    Chapter  Google Scholar 

  10. Mitragotri S, Anissimov YG, Bunge AL, Frasch HF, Guy RH, Hadgraft J, Kasting GB, Lane ME, Roberts MS (2011) Int J Pharma 418:115–129

    Article  CAS  Google Scholar 

  11. Wilschut A, ten Berge WF, Robinson PJ, McKone TE (1995) Chemosphere 30:1275–1296

    Article  CAS  PubMed  Google Scholar 

  12. Zhang J, Zhang H, Wu T, Wang Q, van der Spoel D (2017) J Chem Theory Comput 13:1034–1043

    Article  CAS  PubMed  Google Scholar 

  13. Johnson J, Case DA, Yamazaki T, Gusarov S, Kovalenko A, Luchko T (2016) J Phys-Condens Matter 28:344002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Luchko T, Blinov N, Limon GC, Joyce KP, Kovalenko A (2016) J Comput-Aided Mol Des 30:1115–1127

    Article  CAS  PubMed  Google Scholar 

  15. Kovalenko A, Hirata F (2005) Phys Chem Chem Phys 7:1785–1793

    Article  CAS  PubMed  Google Scholar 

  16. Kovalenko A (2015) Cond Matt Phys 18:32601

    Article  CAS  Google Scholar 

  17. Tsednee T, Luchko T (2019) Phys Rev B 99:032130

    Article  CAS  Google Scholar 

  18. Palmer DS, Frolov A, Ratkova EL, Fedorov MV (2010) J Phys Codens Matter 22:492101

    Article  CAS  Google Scholar 

  19. Shen J, Kromidas L, Schultz T, Bhatia S (2014) Food Chem Toxicol 74:164–176

    Article  CAS  PubMed  Google Scholar 

  20. Chauhan P, Shakya M (2010) SAR QSAR Environ Res 21:481–494

    Article  CAS  PubMed  Google Scholar 

  21. Moss GP, Cronin MTD (2002) Int J Pharm 238:105–109

    Article  CAS  PubMed  Google Scholar 

  22. Moss GP, Sun Y, Wilkinson SC, Davey N, Adams R, Martin GP, Prapopopolou M, Brown MB (2011) J Pharm Pharmacol 63:1411–1427

    Article  CAS  PubMed  Google Scholar 

  23. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) J Cheminform 3:33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. MOPAC2016, Stewart JJP, Stewart computational chemistry. Colorado Springs, CO, USA

  25. Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) J Am Chem Soc 107:3902–3909

    Article  CAS  Google Scholar 

  26. Rappe AK, Casewit CJ, Colwell KS, Goddard WA, Skiff WM (1992) J Am Chem Soc 114:10024–10035

    Article  CAS  Google Scholar 

  27. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  28. Ditchfield R, Hehre WJ, Pople JA (1971) J Chem Phys 54:724–728

    Article  CAS  Google Scholar 

  29. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16, revision B.01. Gaussian Inc., Wallingford CT

    Google Scholar 

  30. Perkyns J, Pettitt BM (1992) J Chem Phys 97:7656–7666

    Article  CAS  Google Scholar 

  31. Roy D, Blinov N, Kovalenko A (2017) J Phys Chem B 121:9268–9273

    Article  CAS  PubMed  Google Scholar 

  32. Molecular Operating Environment (MOE), 2013.08; Chemical Computing Group ULC, 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7, 2018

  33. Yap CW (2011) J Comput Chem 32:1466–1474

    Article  CAS  PubMed  Google Scholar 

  34. Matos GDR, Kyu DY, Loeffler HH, Chodera JD, Shirts MR, Mobley DL (2017) J Chem Eng Data 62:1559–1569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Head-Gordon M, Pople JA, Frisch MJ (1998) Chem Phys Lett 153:503–506

    Article  Google Scholar 

  36. Weigned F (2006) Phys Chem Chem Phys 8:1057–1065

    Article  CAS  Google Scholar 

  37. Ertl P, Rohde B, Selzer P (2000) J Med Chem 43:3714–3717

    Article  CAS  PubMed  Google Scholar 

  38. Wang R, Fu Y, Lai L (1997) J Chem Inf Comput Sci 37:615–621

    Article  CAS  Google Scholar 

  39. Wildman SA, Crippen GM (1999) J Chem Inf Comput Sci 39:868–873

    Article  CAS  Google Scholar 

  40. Viswanadhan VN, Ghose AK, Revankar GR, Robins RK (1989) J Chem Inf Comput Sci 29:163–172

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the NSERC Discovery Grant (RES0029477), and Alberta Prion Research Institute Explorations VII Research Grant (RES0039402). Generous computing time provided by WestGrid (www.westgrid.ca) and Compute Canada/Calcul Canada (www.computecanada.ca) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andriy Kovalenko.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1957 kb)

Supplementary material 2 (XLSX 313 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hinge, V.K., Roy, D. & Kovalenko, A. Predicting skin permeability using the 3D-RISM-KH theory based solvation energy descriptors for a diverse class of compounds. J Comput Aided Mol Des 33, 605–611 (2019). https://doi.org/10.1007/s10822-019-00205-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-019-00205-z

Keywords

Navigation