Skip to main content
Log in

Extensive benchmark of rDock as a peptide-protein docking tool

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Peptide-protein interactions are ubiquitous in living cells and essential to a wide range of biological processes, as well as pathologies such as cancer or cardiovascular disease. Yet, obtaining reliable binding mode predictions in peptide-protein docking remains a great challenge for most computational docking programs. The main goal of this study was to assess the performance of the small molecule docking program rDock in comparison to other widely used small molecule docking programs, using 100 peptide-protein systems with peptides ranging from 2 to 12 residues. As we used two large independent benchmark sets previously published for other small-molecule docking programs (AutoDockVina benchmark and LEADSPEP), the performance of rDock could directly be compared to the performances of AutoDockVina, Surflex, GOLD, and Glide, as well as to the peptide docking protocol PIPER-FlexPepDock and the webserver HPepDock. Our benchmark reveals that rDock can dock the 100 peptides with an overall backbone RMSD below 2.5 Å in 58.5% of the cases (76% for the 47 systems of the AutoDockVina benchmark set and 43% for the 53 systems of the LEADSPEP benchmark set). More specifically, rDock docks up to 11-residue peptides with a backbone RMSD below 2.5 Å in 60.75% of the cases. rDock displays higher accuracy than most available small molecule docking programs for 6–10-residue peptides and can sometimes perform similarly to the peptide docking tool, especially at a high level of exhaustiveness (100 or 150 runs). Its performance, as is the case for many other unguided small molecule docking tools, is compromised when the peptides adopt secondary structures upon binding. However, our analyses suggest that rDock could be used for predicting how medium-sized biologically relevant peptides bind to their respective protein targets when the latter bind in an extended mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Petsalaki E, Russell RB (2008) Curr Opin Biotechnol 19(4):344

    Article  CAS  PubMed  Google Scholar 

  2. Neduva V, Linding R, Su-Angrand I, Stark A, de Masi F, Gibson TJ, Lewis J, Serrano L, Russell RB (2005) PLoS Biol 3(12):e405

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Andrews SJ, Rothnagel JA (2014) Nat Rev Genet 15(3):193

    Article  CAS  PubMed  Google Scholar 

  4. London N, Movshovitz-Attias D, Schueler-Furman O (2010) Structure 18(2):188

    Article  CAS  PubMed  Google Scholar 

  5. Craik DJ, Fairlie DP, Liras S, Price D (2013) Chem Biol Drug Des 81(1):136

    Article  CAS  PubMed  Google Scholar 

  6. Sood VD, Baker D (2006) J Mol Biol 357(3):917

    Article  CAS  PubMed  Google Scholar 

  7. Dangel A, Ackermann N, Abdel-Hadi O, Maier R, Onder K, Francois P, Muller CW, Pane-Farre J, Engelmann S, Schrenzel J, Heesemann J, Lindermayr C (2013) FASEB J 27(11):4476

    Article  CAS  PubMed  Google Scholar 

  8. Vlieghe P, Lisowski V, Martinez J, Khrestchatisky M (2010) Drug Discov Today 15(1–2):40

    Article  CAS  PubMed  Google Scholar 

  9. Xu X, Huang M, Zou X (2018) Biophys Rep 4(1):1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Gaieb Z, Liu S, Gathiaka S, Chiu M, Yang H, Shao C, Feher VA, Walters WP, Kuhn B, Rudolph MG, Burley SK, Gilson MK, Amaro RE (2018) J Comput Aided Mol Des 32(1):1

    Article  CAS  PubMed  Google Scholar 

  11. Cross JB, Thompson DC, Rai BK, Baber JC, Fan KY, Hu Y, Humblet C (2009) J Chem Inf Model 49(6):1455

    Article  CAS  PubMed  Google Scholar 

  12. Ciemny M, Kurcinski M, Kamel K, Kolinski A, Alam N, Schueler-Furman O, Kmiecik S (2018) Drug Discov Today 23(8):1530

    Article  CAS  PubMed  Google Scholar 

  13. Trellet M, Melquiond AS, Bonvin AM (2013) PLoS ONE 8(3):e58769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ben-Shimon A, Niv MY (2015) Structure 23(5):929

    Article  CAS  PubMed  Google Scholar 

  15. Kurcinski M, Jamroz M, Blaszczyk M, Kolinski A, Kmiecik S (2015) Nucleic Acids Res 43(W1):W419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Peterson LX, Roy A, Christoffer C, Terashi G, Kihara D (2017) PLoS Comput Biol 13(4):e1005485

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Schindler CEM, de Vries SJ, Zacharias M (2015) Structure 23(8):1507

    Article  CAS  PubMed  Google Scholar 

  18. Yan C, Xu X, Zou X (2016) Structure 24(10):1842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. London N, Raveh B, Cohen E, Fathi G, Schueler-Furman O (2011) Nucleic Acids Res 39(suppl_2):W249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Alam N, Goldstein O, Xia B, Porter KA, Kozakov D, Schueler-Furman O (2017) PLoS Comput Biol 13(12):e1005905

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Antes I (2010) Proteins 78(5):1084

    Article  CAS  PubMed  Google Scholar 

  22. Gront D, Kulp DW, Vernon RM, Strauss CE, Baker D (2011) PLoS ONE 6(8):e23294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kozakov D, Brenke R, Comeau SR, Vajda S (2006) Proteins 65(2):392

    Article  CAS  PubMed  Google Scholar 

  24. Raveh B, London N, Schueler-Furman O (2010) Proteins 78(9):2029

    CAS  PubMed  Google Scholar 

  25. Morris GM, Huey R, Olson AJ (2008) Curr Protoc Bioinf. https://doi.org/10.1002/0471250953.bi0814s24

    Article  Google Scholar 

  26. Trott O, Olson AJ (2010) J Comput Chem 31(2):455

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) J Med Chem 47(7):1739

    Article  CAS  PubMed  Google Scholar 

  28. Repasky MP, Shelley M, Friesner RA (2007) Curr Protoc Bioinf. https://doi.org/10.1002/0471250953.bi0812s18

    Article  Google Scholar 

  29. Hetényi C, van der Spoel D (2009) Protein Sci 11(7):1729

    Article  CAS  Google Scholar 

  30. Tubert-Brohman I, Sherman W, Repasky M, Beuming T (2013) J Chem Inf Model 53(7):1689

    Article  CAS  PubMed  Google Scholar 

  31. Rentzsch R, Renard BY (2015) Brief Bioinf 16(6):1045

    Article  CAS  Google Scholar 

  32. Hauser AS, Windshugel B (2016) J Chem Inf Model 56(1):188

    Article  CAS  PubMed  Google Scholar 

  33. Jones G, Willett P, Glen RC (1995) J Mol Biol 245(1):43

    Article  CAS  PubMed  Google Scholar 

  34. Jain AN (2003) J Med Chem 46(4):499

    Article  CAS  PubMed  Google Scholar 

  35. Ruiz-Carmona S, Alvarez-Garcia D, Foloppe N, Garmendia-Doval AB, Juhos S, Schmidtke P, Barril X, Hubbard RE, Morley SD (2014) PLoS Comput Biol 10(4):e1003571

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28(1):235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W (2013) J Comput Aided Mol Des 27(3):221

    Article  PubMed  CAS  Google Scholar 

  38. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) J Comput Chem 25(13):1605

    Article  CAS  PubMed  Google Scholar 

  39. LigPrep (2016) Small-molecule drug discovery suite 2016-4. Schrödinger, LLC, New York

    Google Scholar 

  40. Suhre K, Sanejouand Y-H (2004) Nucleic Acids Res 32(suppl_2):W610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. http://rdock.sourceforge.net/wp-content/uploads/2015/08/rDock_User_Guide.pdf

  42. Scheufler C, Brinker A, Bourenkov G, Pegoraro S, Moroder L, Bartunik H, Hartl FU, Moarefi I (2000) Cell 101(2):199

    Article  CAS  PubMed  Google Scholar 

  43. Zhou P, Li B, Yan Y, Jin B, Wang L, Huang SY (2018) J Chem Inf Model 58(6):1292

    Article  CAS  PubMed  Google Scholar 

  44. Cavasotto CN (2012) Methods Mol Biol 819:157

    Article  CAS  PubMed  Google Scholar 

  45. Antunes DA, Moll M, Devaurs D, Jackson KR, Lizee G, Kavraki LE (2017) Cancer Res 77(21):e55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Davis IW, Arendall WB 3rd, Richardson DC, Richardson JS (2006) Structure 14(2):265

    Article  CAS  PubMed  Google Scholar 

  47. Zhou P, Jin B, Li H, Huang SY (2018) Nucleic Acid Res 46(W1):W443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Xu X, Yan C, Zou X (2018) J Comput Chem 39(28):2409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. de Vries SJ, Rey J, Schindler CEM, Zacharias M, Tuffery P (2017) Nucleic Acids Res 45(W1):W361

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Lee H, Heo L, Lee MS, Seok C (2015) Nucleic Acid Res 43(W1):W431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. van Zundert GCP, Rodrigues JPGLM, Trellet M, Schmitz C, Kastritis PL, Karaca E, Melquiond ASJ, van Dijk M, de Vries SJ, Bonvin AMJJ (2016) J Mol Biol 428:720

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Nostrum Biodiscovery is supported by Fundación Marcelino Botín (Mind the Gap) and CDTI (Neotec grant -EXP 00094141/SNEO-20161127). DS, YW, and RS would like to thank the technical support of the Barcelona Supercomputing Center and the Institute for Research in Biomedicine (IRB Barcelona). Support from Schrödinger is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Soliva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soler, D., Westermaier, Y. & Soliva, R. Extensive benchmark of rDock as a peptide-protein docking tool. J Comput Aided Mol Des 33, 613–626 (2019). https://doi.org/10.1007/s10822-019-00212-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-019-00212-0

Keywords

Navigation