Skip to main content

Advertisement

Repurposing of known drugs for leishmaniasis treatment using bioinformatic predictions, in vitro validations and pharmacokinetic simulations

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Leishmaniasis is a neglected tropical disease caused by Leishmania parasites and is associated to more than 1.3 million cases annually. Some of the pharmacological options for treating the disease are pentavalent antimonials, pentamidine, miltefosine, and amphotericin B. However, all are associated with a wide range of adverse effects and contraindications, as well as resistance from the parasite. In the present study, we looked for pharmacological alternatives to treat leishmaniasis, with a focus on drug repurposing. This was done by detecting potential homologs between proteins targeted by approved drugs and proteins of the parasite. The proteins were analyzed using an interaction network, and the drugs were subjected to in vitro evaluations and pharmacokinetics simulations to compare probable plasma concentrations with the effective concentrations detected experimentally. This strategy yielded a list of 33 drugs with potential anti-Leishmania activity, and more than 80 possible protein targets in the parasite. From the drugs tested, two reported high in vitro activity (perphenazine EC50 = 1.2 µg/mL and rifabutin EC50 = 8.5 µg/mL). These results allowed us to propose these drugs as candidates for further in vivo studies and evaluations of the effectiveness on their topical forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. WHO, “Leishmaniasis Technical Report,” 2010.

  2. Alvar J et al (2012) Leishmaniasis worldwide and global estimates of its incidence. PLoS ONE 7:5

    Article  Google Scholar 

  3. Minodier P, Parola P (2007) Cutaneous leishmaniasis treatment. Travel Med Infect Dis 5(3):150–158

    Article  PubMed  Google Scholar 

  4. Singh N, Kumar M, Singh RK (2012) Leishmaniasis: current status of available drugs and new potential drug targets. Asian Pac J Trop Med 5(6):485–497

    Article  CAS  PubMed  Google Scholar 

  5. Chakravarty J, Sundar S (2010) Drug resistance in leishmaniasis. J Glob Infect Dis 2(2):167–176

    Article  PubMed  PubMed Central  Google Scholar 

  6. Adams CP, Van Brantner V (2006) Market watch : estimating the cost of new drug development—is it really $802 million? Health Aff 25(2):420–428

    Article  Google Scholar 

  7. Ashburn TT, Thor KB (2004) Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov 3(8):673–683

    Article  CAS  Google Scholar 

  8. Ekins S, Williams, AJ, Krasowski MD, Freundlich JS (2011) In silico repositioning of approved drugs for rare and neglected diseases. Drug Discov Today 16(7–8):298–310

    Article  PubMed  Google Scholar 

  9. Novac N (2013) Challenges and opportunities of drug repositioning. Trends Pharmacol Sci 34(5):267–272

    Article  CAS  PubMed  Google Scholar 

  10. Czock D, Markert C, Hartman B, Keller F (2009) Pharmacokinetics and pharmacodynamics of antimicrobial drugs. Expert Opin Drug Metab Toxicol 5(5):475–487

    Article  CAS  PubMed  Google Scholar 

  11. Villoutreix BO, Lagorce D, Labbé CM, Sperandio O, Miteva MA (2013) One hundred thousand mouse clicks down the road: selected online resources supporting drug discovery collected over a decade. Drug Discov Today 18(21–22):1081–1089

    Article  PubMed  Google Scholar 

  12. Flórez AF et al (2010) Protein network prediction and topological analysis in Leishmania major as a tool for drug target selection. BMC Bioinform 11:484

    Article  Google Scholar 

  13. Scardoni G and Laudanna C (2012) Network centralities for Cytoscape Centralities. Bioinformatics, pp 1–8

  14. Taylor VM et al (2011) In vitro and in vivo studies of the utility of dimethyl and diethyl carbaporphyrin ketals in treatment of cutaneous leishmaniasis. Antimicrob Agents Chemother 55(10):4755–4764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pulido SA (2012) Acta Tropica Improvement of the green fluorescent protein reporter system in Leishmania spp. for the in vitro and in vivo screening of antileishmanial drugs. Acta Trop 122:36–45

    Article  CAS  PubMed  Google Scholar 

  16. Finney DJ (1952) Statistical method in biological assay. Stat Method Biol Assay 172:533–534

    Google Scholar 

  17. Schumitzky A, Wang X, D’Argenio DZ (2009) ADAPT 5 user’s guide: pharmacokinetic/pharmacodynamic systems analysis software. Biomedical Simulations Resource, Los Angeles

    Google Scholar 

  18. Dorlo TPC et al (2008) Pharmacokinetics of miltefosine in old world cutaneous leishmaniasis patients. Antimicrob Agents Chemother 52(8):2855–2860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Amantea MA, Bowden RA, Forrest A, Working PK, Newman MS, Mamelok RD (1999) The population pharmacokinetics of amphotericin B colloidal dispersion in patients receiving bone marrow transplants. Chemotherapy 45(9):48–53

    Article  CAS  PubMed  Google Scholar 

  20. Travi B, Osorio Y (1998) Failure of albendazole as an alternative treatment of Cutaneous leishmaniasis in the hamster model. Mem Inst Oswaldo Cruz 93(4):515–516

    Article  CAS  PubMed  Google Scholar 

  21. Khan I, Yasmin R, Sidiqui I (2007) Chloroquine in cutaneous leishmaniasis. J Pakistan Assoc Dermatologists 17(2):95–100

    Google Scholar 

  22. Behforouz NC, Wenger CD, Mathison BA (1986) Prophylactic treatment of BALB/c mice with cyclosporine A and its analog B-5-49 enhances resistance to Leishmania major. J Immunol 136(8):3067

    CAS  PubMed  Google Scholar 

  23. Werbovetz KA, Brendle JJ, Sackett DL (1999) Purification, characterization, and drug susceptibility of tubulin from Leishmania. Mol Biochem Parasitol 98(1):53–65

    Article  CAS  PubMed  Google Scholar 

  24. Cunningham AC (2002) Parasitic adaptive mechanisms in infection by Leishmania. Exp Mol Pathol 72(2):132–141

    Article  CAS  PubMed  Google Scholar 

  25. Burchmore RJS, Barrett MP (2001) Life in vacuoles—nutrient acquisition by Leishmania amastigotes. Int J Parasitol 31(12):1311–1320

    Article  CAS  PubMed  Google Scholar 

  26. Chawla B, Madhubala R (2010) Drug targets in Leishmania. J Parasit Dis 34(1):1–13

    Article  PubMed  PubMed Central  Google Scholar 

  27. A. K. Mishra et al. (2017) Discovery of novel inhibitors for Leishmania nucleoside diphosphatase kinase (NDK) based on its structural and functional characterization. J. Comput Aided Mol Des 0(0):0

  28. Patino LH et al (2017) Spatial distribution, Leishmania species and clinical traits of Cutaneous leishmaniasis cases in the Colombian army. PLoS Negl Trop Dis 11(8):e0005876

    Article  PubMed  PubMed Central  Google Scholar 

  29. Mazumder S, Mukherjee T, Ghosh J (1992) Allosteric modulation of Leishmania donovani plasma membrane Ca (2+)-ATPase by endogenous calmodulin. J Biol 267:18440–18446

    CAS  Google Scholar 

  30. Folgueira C, Carrión J, Moreno J, Saugar JM, Cañavate C, Requena JM (2008) Effects of the disruption of the HSP70-II gene on the growth, morphology, and virulence of Leishmania infantum promastigotes. Int Microbiol 11(2):81–89

    CAS  PubMed  Google Scholar 

  31. Chavali AK, Blazier AS, Tlaxca JL, Jensen PA, Pearson RD, Papin JA (2012) Metabolic network analysis predicts efficacy of FDA-approved drugs targeting the causative agent of a neglected tropical disease. BMC Syst Biol 6(1):27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rodriguez-contreras D, Feng X, Keeney KM, Bouwer HGA, Landfear SM (2007) Phenotypic characterization of a glucose transporter null mutant in Leishmania Mexicana 153:9–18

    CAS  Google Scholar 

  33. Ursu O et al (2017) DrugCentral: online drug compendium. Nucleic Acids Res 45:D932–D939

    Article  CAS  PubMed  Google Scholar 

  34. Jin Y, Pollock BG, Coley K, Miller D, Marder SR, Florian J, Schneider L, Lieberman J, Kirshner M, Bies RR (2010) Population pharmacokinetics of perphenazine in schizophrenia patients from CATIE: impact of race and smoking. J Clin Pharmacol 50(1):73–80

    Article  CAS  PubMed  Google Scholar 

  35. Baheti G, Kiser JJ, Havens PL, Fletcher CV (2011) Plasma and intracellular population pharmacokinetic analysis of tenofovir in HIV-1-infected patients. Antimicrob Agents Chemother 55(11):5294–5299

    Article  CAS  Google Scholar 

  36. Duong JK, Kumar SS, Kirkpatrick CM, Greenup LC, Arora M, Lee TC, Timmins P, Graham GG, Furlong TJ, Greenfield JR, Williams KM, Day RO (2013) Population pharmacokinetics of metformin in healthy subjects and patients with type 2 diabetes mellitus: simulation of doses according to renal function. Clin Pharmacokinet 52(5):373–384

    Article  CAS  PubMed  Google Scholar 

  37. Moore KHP, Yuen GJ, Hussey EK, Pakes GE, Eron JJ, Bartlett JA (1999) Population pharmacokinetics of lamivudine in adult human immunodeficiency virus-infected patients enrolled in two phase III clinical trials. Antimicrob Agents Chemother 43(12):3025–3029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lindemalm S, Savic RM, Karlsson MO, Juliusson G, Liliemark J, Albertioni F (2005) Application of population pharmacokinetics to cladribine. BMC Pharmacol 5:4

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gatti G, Papa P, Torre D, Andreoni M, Poggio A, Bassetti M, Marone P (1998) Population pharmacokinetics of rifabutin in human immunodeficiency virus-infected patients. Antimicrob Agents Chemother 42(8):2017–2023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This Project was funded by the Departamento Administrativo de Ciencia y Tecnología e Innovación-Colciencias, under the contract number 534–2013 and Project code 1115–569-33419. The authors acknowledge Dr. Andres Zuluaga and Dr. Carlos Rodriguez for their support and advisory in the pharmacokinetic analysis, and Professor Jaime Hincapie for his collaboration in the study design.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Muskus.

Ethics declarations

Conflict of interest

We declare that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 351 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bustamante, C., Ochoa, R., Asela, C. et al. Repurposing of known drugs for leishmaniasis treatment using bioinformatic predictions, in vitro validations and pharmacokinetic simulations. J Comput Aided Mol Des 33, 845–854 (2019). https://doi.org/10.1007/s10822-019-00230-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-019-00230-y

Keywords