Skip to main content
Log in

Application of the 3D-RISM-KH molecular solvation theory for DMSO as solvent

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The molecular solvation theory in the form of the Three-Dimensional Reference Interaction Site Model (3D-RISM) with Kovalenko–Hirata (KH) closure relation is benchmarked for use with dimethyl sulfoxide (DMSO) as solvent for (bio)-chemical simulation within the framework of integral equation formalism. Several force field parameters have been tested to correctly reproduce solvation free energy in DMSO, ion solvation in DMSO, and DMSO coordination prediction. Our findings establish a united atom (UA) type parameterization as the best model of DMSO for use in 3D-RISM-KH theory based calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. This is a modified SPC point charge model of water with additional LJ parameters for the hydrogens (σH = 1.1 Å, εH = 0.046 kcal/mol) to avoid convergence issues and getting correct thermodynamics in 1D-RISM-KH theory.

References

  1. Papich MG (2016) Saunders handbook of veterinary drugs, 4th edn. Elsevier, St. Louis

    Google Scholar 

  2. Babij NR, McCusker EO, Whiteker GT, Canturk B, Choy N, Creemer LC, De Amicis CV, Hewlwtt NM, Johnson PL, Knobelsdorf JA, Li F, Lorsbach BA, Nugent BM, Ryan SJ, Smith MR, Yang Q (2016) Org Proc Res Dev 20:661–667

    CAS  Google Scholar 

  3. Zhou B, Zhao L, Shen M, Zhao J, Shi X (2017) J Mater Chem B 5:1542–1550

    CAS  Google Scholar 

  4. Clark T, Murray JS, Lane P, Politzer P (2008) J Mol Model 14:689–697

    CAS  PubMed  Google Scholar 

  5. Marren K (2011) Physician Sportsmed 39:75–82

    Google Scholar 

  6. Soper AK, Luzar A (1992) J Chem Phys 97:1320

    CAS  Google Scholar 

  7. Pekary AE (1974) J Phys Chem 78:1744–1746

    CAS  Google Scholar 

  8. Higashigaki Y, Christensen DH, Wang CH (1981) J Phys Chem 85:2531–2535

    CAS  Google Scholar 

  9. Onthong U, Megyes T, Bako I, Radnai T, Grosz T, Hermansson K, Probst M (2004) Phys Chem Chem Phys 9:2136–2144

    Google Scholar 

  10. Rao BG, Singh UC (1990) J Am Chem Soc 112:3803–3811

    CAS  Google Scholar 

  11. Luzar A, Soper AK, Chandler D (1993) J Chem Phys 99:6836–6847

    CAS  Google Scholar 

  12. Liu H, Müeller-Plathe F, van Gunsteren WF (1995) J Am Chem Soc 117:4363

    CAS  Google Scholar 

  13. Bordat P, Sacristan J, Reith D, Girard S, Glättli A, Müller-Plathe F (2003) Chem Phys Lett 374:201–205

    CAS  Google Scholar 

  14. Zheng Y-J, Ornstein RL (1996) J Am Chem Soc 118:4175–4180

    CAS  Google Scholar 

  15. Vishnyakov A, Lyubartsev AP, Laaksonen A (2001) J Phys Chem A 105:1702–1710

    CAS  Google Scholar 

  16. Geerke DP, Oostenbrink C, van der Vegt NFA, van Gunsteren WF (2004) J Phys Chem B 108:1436–1445

    CAS  Google Scholar 

  17. Chalaris M, Marinakis S, Dellis D (2008) Fluid Phase Equilib 267:47–60

    CAS  Google Scholar 

  18. Strader ML, Feller SE (2002) J Phys Chem A 106:1074–1080

    CAS  Google Scholar 

  19. Mrázková E, Hobza P (2003) J Phys Chem A 107:71032–71039

    Google Scholar 

  20. Skaf MS, Vechi SM (2003) J Chem Phys 119:2181

    CAS  Google Scholar 

  21. Venkataramanan NS, Suvitha A (2018) J Mol Graph Model 81:50–59

    CAS  PubMed  Google Scholar 

  22. Chandler D, McCoy JD, Singer SJ (1986) J Chem Phys 85:5971–5976

    CAS  Google Scholar 

  23. Chandler D, McCoy JD, Singer SJ (1986) J Chem Phys 85:5977–5982

    CAS  Google Scholar 

  24. Lowden LJ, Chandler D (1973) J Chem Phys 59:6587–6595

    CAS  Google Scholar 

  25. Johnson J, Case DA, Yamazaki T, Gusarov S, Kovalenko A, Luchko T (2016) J Phys Condens Matter 28:344002

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Luchko T, Blinov N, Limon GC, Joyce KP, Kovalenko A (2016) J Comput Aided Mol Des 30:1115–1127

    CAS  PubMed  Google Scholar 

  27. Kovalenko A, Hirata F (2005) Phys Chem Chem Phys 7:1785–1793

    CAS  PubMed  Google Scholar 

  28. Kovalenko A (2015) Condens Matter Phys 18:32601

    Google Scholar 

  29. Tsednee T, Luchko T (2019) Phys Rev B 99:032130

    CAS  Google Scholar 

  30. Palmer DS, Frolov A, Ratkova EL, Fedorov MV (2010) J Phys Condens Matter 22:492101

    PubMed  Google Scholar 

  31. Kovalenko A (2017) Multiscale modeling of solvation. In: Breitkopf C, Swider-Lyons K (eds) Springer handbook of electrochemical energy. Springer, Berlin, pp 95–139

    Google Scholar 

  32. Roy D, Kovalenko A (2019) J Phys Chem A 123:4087–4093

    CAS  PubMed  Google Scholar 

  33. Misin M, Fedorov MV, Palmer DS (2015) J Chem Phys 142:091105

    PubMed  Google Scholar 

  34. Roy D, Blinov N, Kovalenko A (2017) J Phys Chem B 121:9268–9273

    CAS  PubMed  Google Scholar 

  35. Hinge VK, Roy D, Kovalenko A (2019) J Comput Aided Mol Des 33:605–611

    CAS  PubMed  Google Scholar 

  36. Roy D, Hinge VK, Kovalenko A (2019) ACS Omega 4:3055–3060

    CAS  Google Scholar 

  37. Heil J, Tomazic D, Egbers S, Kast SM (2014) J Mol Model 20:2161

    PubMed  Google Scholar 

  38. Marenich AV, Kelly CP, Thompson JD, Hawkins GD, Chambers CC, Giesen DJ, Winget P, Cramer CJ, Truhlar DG (2012) Minnesota solvation database—version 2012. University of Minnesota, Minneapolis

    Google Scholar 

  39. Inada Y, Hayashi H, Sugimoto K, Funahashi S (1999) J Phys Chem A 103:1401–1406

    CAS  Google Scholar 

  40. Case DA, Ben-Shalom IY, Brozell SR, Cerutti DS, Cheatham TE III, Cruzeiro VWD, Darden TA, Duke RE, Ghoreishi D, Gilson MK, Gohlke H, Goetz AW, Greene D, Harris R, Homeyer N, Izadi S, Kovalenko A, Kurtzman T, Lee TS, LeGrand S, Li P, Lin C, Liu J, Luchko T, Luo R, Mermelstein DJ, Merz KM, Miao Y, Monard G, Nguyen C, Nguyen H, Omelyan I, Onufriev A, Pan F, Qi R, Roe DR, Roitberg A, Sagui C, Schott-Verdugo S, Shen J, Simmerling CL, Smith J, Salomon-Ferrer R, Swails J, Walker RC, Wang J, Wei H, Wolf RM, Wu X, Xiao L, York DM, Kollman PA (2018) AMBER 2018. University of California, San Francisco

    Google Scholar 

  41. Hirata F, Pettitt BM, Rossky PJ (1982) J Chem Phys 77:509

    CAS  Google Scholar 

  42. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215

    CAS  Google Scholar 

  43. McLean AD, Handler GS (1980) J Chem Phys 72:5639

    CAS  Google Scholar 

  44. Raghavachari K, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650

    Google Scholar 

  45. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16, revision B.01. Gaussian Inc, Wallingford

    Google Scholar 

  46. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) J Cheminform 3:33

    PubMed  PubMed Central  Google Scholar 

  47. Rappe AK, Casewit CJ, Colwell KS, Goddard WA, Skiff WM (1992) J Am Chem Soc 114:10024–10035

    CAS  Google Scholar 

  48. Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) J Am Chem Soc 107:3902–3909

    CAS  Google Scholar 

  49. MOPAC (2016) Stewart JJP. Stewart Computational Chemistry, Colorado Springs

    Google Scholar 

  50. Chai J-D, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615–6620

    CAS  PubMed  Google Scholar 

  51. Weigend F (2006) Phys Chem Chem Phys 8:1057–1065

    CAS  PubMed  Google Scholar 

  52. Chan EJ, Cox BG, Harrowfield JM, Ogden MI, Skelton BW, White AH (2004) Inorg Chim Acta 357:2365

    CAS  Google Scholar 

  53. Persson I, Persson P, Sandstrom A, Ullstrom A-S (2002) J Chem Soc Dalton Trans 7:1256

    Google Scholar 

  54. Glatz M, Schroffenegger M, Weil M, Kirchner K (2016) Acta Crystallogr E 72:904

    CAS  Google Scholar 

  55. Tzou J-R, Mullaney M, Norman RE (1995) Acta Crystallogr C 51:2249–2252

    Google Scholar 

  56. Borin IA, Skaff MS (1999) J Chem Phys 110:6412

    CAS  Google Scholar 

  57. LeBel RG, Goring DAI (1962) J Chem Eng Data 7:100–101

    CAS  Google Scholar 

  58. Chaban VV (2018) Phys Chem Chem Phys 20:23754–23761

    CAS  PubMed  Google Scholar 

  59. Perera A, Lovrincevic B (2018) Mol Phys 116:21–22

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the NSERC Discovery Grant (RES0029477), and the Alberta Prion Research Institute Explorations VII Research Grant (RES0039402). Generous computing time provided by WestGrid (www.westgrid.ca) and Compute Canada/Calcul Canada (www.computecanada.ca) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andriy Kovalenko.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6664 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, D., Kovalenko, A. Application of the 3D-RISM-KH molecular solvation theory for DMSO as solvent. J Comput Aided Mol Des 33, 905–912 (2019). https://doi.org/10.1007/s10822-019-00238-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-019-00238-4

Keywords

Navigation