Abstract
We have developed an algorithm that enables simplified box orbital functions (SBO) to be obtained with optimized coefficients by fitting them to functions of many types. SBOs are a linear combination of radial functions useful in quantum chemistry calculations which can be spatially restricted (defined in \(0 \le r < r_{0}\) interval, and zero for \(r \ge r_{0}\)). The algorithm proposed makes it possible to obtain the optimal radius \(r_{0}\) and the coefficients of the SBOs of any number of terms from the functions to be fitted, but also allows the user to define a particular radius r and calculate the coefficients of the combination of terms of the SBOs. SBOs have proved to be useful in the calculation of molecular properties, and can reduce the complexity of the integral calculations, especially in huge chemical systems such as atomic clusters. These types of functions are also adequate for studying confined systems such as molecules in solution or big chemical systems such as atomic clusters. In addition, while carrying out the examples presented in this study we have tested the suitability of SBO functions to calculate molecular reactivity, showing that the basis functions provide results as good as the basis sets typically used for this kind of calculations.












Similar content being viewed by others
References
García V, Zorrilla D, Fernández M (2014) Int J Quantum Chem 114:1581
García V, Sánchez J, Zorrilla D, Fernández M (2016) Int J Quantum Chem 116:1303
García V, Zorrilla D, Sánchez-Márquez J, Fernández M (2018) Mol Phys 116:2310
Lepetit MB, Lafon L, Lafage X (1997) Int J Quantum Chem 64:411
Steiner E, Sykes S (1972) Mol Phys 23:643
McKemmish LK, Gilbert ATB, Gill PMW (2014) J Chem Theory Comput 10:4369
McKemmish LK (2015) J Chem Phys 142:134104
McKemmish LK, Gilbert ATB (2015) J Chem Theory Comput 11:8
García V, Zorrilla D, Fernández M (2013) Int J Quantum Chem 113:2172
Miertuš S, Tomasi J (1982) Chem Phys 65:239–245
Pascual-Ahuir JL, Silla E, Tuñón I (1994) J Comp Chem 15:1127–1138
Cossi M, Barone V, Cammi R, Tomasi J (1996) Chem Phys Lett 255:327–335
Cossi M, Barone V, Mennucci B, Tomasi J (1998) Chem Phys Lett 286:253–260
Barone V, Cossi M, Tomasi J (1997) J Chem Phys 107:3210–3221
Mennucci B, Tomasi J (1997) J Chem Phys 106:5151–5158
Barone V, Cossi M (1998) J Phys Chem A 102:1995–2001
Barone V, Cossi M, Tomasi J (1998) J Comp Chem 19:404–417
Cossi M, Barone V, Robb MA (1999) J Chem Phys 111:5295–5302
Cancès E, Mennucci B (2001) J Chem Phys 114:4744–4745
Cancès E, Mennucci B, Tomasi J (1997) J Chem Phys 107:3032–3041
Tomasi J, Mennucci B, Cancès E (1999) J Mol Struct (Theochem) 464:211–226
Cossi M, Rega N, Scalmani G, Barone V (2001) J Chem Phys 114:5691–5701
Cossi M, Scalmani G, Rega N, Barone V (2002) J Chem Phys 117:43–54
Cossi M, Rega N, Scalmani G, Barone V (2003) J Comp Chem 24:669–681
Chipman DM (2000) J Chem Phys 112:5558–5565
Foresman JB, Keith TA, Wiberg KB, Snoonian J, Frisch MJ (1996) J Phys Chem 100:16098–16104
Kirkwood JG (1934) J Chem Phys 2:351
Onsager L (1936) J Am Chem Soc 58:1486–1493
Wong MW, Frisch MJ, Wiberg KB (1991) J Am Chem Soc 113:4776–4782
Wong MW, Wiberg KB, Frisch MJ (1991) J Chem Phys 95:8991–8998
Roetti C, Clementi E (1974) J Chem Phys 60:4725
UCA-SBO software, downloadable at: Linux Version: https://www2.uca.es/dept/quimica_fisica/software/uca_sbo.tar.gz. Windows Version: https://www2.uca.es/dept/quimica_fisica/software/uca_sbo.exe
FORTRAN Programming Language web site: https://groups.umd.umich.edu/cis/course.des/cis400/fortran/fortran.html
WOLFRAM web site: https://www.wolfram.com/
Mathworks web site: https://es.mathworks.com/
Maplesoft, Mathematics-based software & services for education, engineering, and research: https://www.maplesoft.com/
Gaussian 09W, Revision A.02-SMP, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian, Inc. Wallingford CT
García V, Zorrilla D, Sánchez-Márquez J, Fernández M (2017) J Mol Model 23:165
Stewart RF (1970) J Chem Phys 52:431
Here WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257
Klamt A, Jonas V (1996) J Chem Phys 105:9972
Sánchez-Márquez J, Zorrilla D, García V, Fernández M (2018) J Mol Model 24:25
Clementi E, Raimondi DL (1963) J Chem Phys 38:2686
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Sánchez-Márquez, J., García, V., Zorrilla, D. et al. Software to obtain spatially localized functions from different radial functions. J Comput Aided Mol Des 34, 267–280 (2020). https://doi.org/10.1007/s10822-019-00272-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10822-019-00272-2