Abstract
The decoupling approach to solvation free energy calculations requires scaling the interactions between the solute and the solution with all intramolecular interactions preserved. This paper reports a new procedure that makes it possible to these calculations in LAMMPS. The procedure is tested against built-in GROMACS capabilities. The model compounds chosen to test our methodology are ethanol and biphenyl. The LAMMPS and GROMACS results obtained are in good agreement with each other. This work should help perform solvation free energy calculations in LAMMPS and/or other molecular dynamics software having no built-in functions to implement the decoupling approach.



Similar content being viewed by others
References
Sanz E, Vega C (2007) J Chem Phys 126(1):014507
Aragones J, Sanz E, Vega C (2012) J Chem Phys 136(24):244508
Benavides A, Aragones J, Vega C (2016) J Chem Phys 144(12):124504
Espinosa J, Young J, Jiang H, Gupta D, Vega C, Sanz E, Debenedetti P, Panagiotopoulos A (2016) J Chem Phys 145(15):154111
Schnieders MJ, Baltrusaitis J, Shi Y, Chattree G, Zheng L, Yang W, Ren P (2012) J Chem Theory Comput 8(5):1721–1736
Li L, Totton T, Frenkel D (2017) J Chem Phys 146(21):214110
Guilherme DRM, Mobley DL (2018) F1000Research 7:686
Bellucci MA, Gobbo G, Wijethunga TK, Ciccotti G, Trout BL (2019) J Chem Phys 150(9):094107
Garrido NM, Economou IG, Queimada AJ, Jorge M, Macedo EA (2012) AIChE J 58(6):1929–1938
Yang L, Ahmed A, Sandler SI (2013) J Comput Chem 34(4):284–293
Bapat DU, Dalvi VH (2019) J Phys Chem B 123(7):1618–1635
Mester Z, Panagiotopoulos AZ (2015) J Chem Phys 142(4):044507
Shell MS (2015) Thermodynamics and statistical mechanics: an integrated approach. Cambridge University Press, Cambridge
Zwanzig RW (1954) J Chem Phys 22(8):1420–1426
Kirkwood JG (1935) J Chem Phys 3(5):300–313
Berendsen HJ, van der Spoel D, van Drunen R (1995) Comput Phys Commun 91(1–3):43–56
Pearlman DA, Case DA, Caldwell JW, Ross WS, Cheatham TE III, DeBolt S, Ferguson D, Seibel G, Kollman P (1995) Comput Phys Commun 91(1–3):1–41
Plimpton S (1995) J Comput Phys 117(1):1–19
Paluch AS, Shah JK, Maginn EJ (2011) J Chem Theory Comput 7(5):1394–1403
Lyubartsev AP, Laaksonen A (2000) Comput Phys Commun 128(3):565–589
Lyubartsev AP, Laaksonen A (2010) MDynaMix: a molecular dynamics program. Stockholm University, Sweden
Klimovich PV, Shirts MR, Mobley DL (2015) J Comput Aided Mol Des 29(5):397–411
Beutler TC, Mark AE, van Schaik RC, Gerber PR, Van Gunsteren WF (1994) Chem Phys Lett 222(6):529–539
Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) J Comput Chem 25(9):1157–1174
Jakalian A, Bush BL, Jack DB, Bayly CI (2000) J Comput Chem 21(2):132–146
Jakalian A, Jack DB, Bayly CI (2002) J Comput Chem 23(16):1623–1641
Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79(2):926–935
Berthelot D (1898) Compt Rendus 126:1703–1706
Lorentz H (1881) Ann Phys 248(1):127–136
Allen MP, Tildesley DJ (2017) Computer simulation of liquids. Oxford University Press, Oxford
Mobley DL, Guthrie JP (2014) J Comput Aided Mol Des 28(7):711–720
Ryckaert JP, Ciccotti G, Berendsen HJ (1977) J Comput Phys 23(3):327–341
Andersen HC (1983) J Comput Phys 52(1):24–34
Ewald PP (1921) Ann Phys 369(3):253–287
Hockney RW, Eastwood JW (1988) Computer simulation using particles. CRC Press, Boca Raton
Martyna GJ, Tobias DJ, Klein ML (1994) J Chem Phys 101(5):4177–4189
Abramowitz M, Stegun IA (1965) Handbook of mathematical functions: with formulas, graphs, and mathematical tables, vol 55. Courier Corporation, North Chelmsford
Mobley DL, Shirts M, Lim N, Chodera J, Beauchamp K, Lee-Ping (2018) Mobleylab/freesolv: version 0.52. https://doi.org/10.5281/zenodo.1161245
Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) SoftwareX 1:19–25
Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) J Chem Phys 103(19):8577–8593
Hess B, Bekker H, Berendsen HJ, Fraaije JG (1997) J Comput Chem 18(12):1463–1472
Miyamoto S, Kollman PA (1992) J Comput Chem 13(8):952–962
Goga N, Rzepiela A, De Vries A, Marrink S, Berendsen H (2012) J Chem Theory Comput 8(10):3637–3649
Berendsen HJ, Postma J, van Gunsteren WF, DiNola A, Haak J (1984) J Chem Phys 81(8):3684–3690
Parrinello M, Rahman A (1981) J Appl Phys 52(12):7182–7190
Nosé S, Klein M (1983) Mol Phys 50(5):1055–1076
Duarte Ramos Matos G, Kyu DY, Loeffler HH, Chodera JD, Shirts MR, Mobley DL (2017) J Chem Eng Data 62(5):1559–1569
Bennett CH (1976) J Comput Phys 22(2):245–268
Shirts MR, Chodera JD (2008) J Chem Phys 129(12):124105
Acknowledgements
We are grateful for the financial support provided by Eli Lilly. Use was made of computational facilities purchased with funds from the National Science Foundation (CNS-1725797) and administered by the Center for Scientific Computing (CSC). The CSC is supported by the California NanoSystems Institute and the Materials Research Science and Engineering Center (MRSEC; NSF DMR 1720256) at UC Santa Barbara.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
About this article
Cite this article
Khanna, V., Monroe, J.I., Doherty, M.F. et al. Performing solvation free energy calculations in LAMMPS using the decoupling approach. J Comput Aided Mol Des 34, 641–646 (2020). https://doi.org/10.1007/s10822-020-00303-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10822-020-00303-3