Skip to main content
Log in

Characterization of PD-L1 binding sites by a combined FMO/GRID-DRY approach

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The programmed cell death protein 1 (PD-1) and its ligand, PD-L1, constitute an important co-inhibitory immune checkpoint leading to downregulation of immune system. Tumor cells developed a strategy to trigger PD-1/PD-L1 pathway reducing the T cell anticancer activity. Anti-PD-L1 small drugs, generally with improved pharmacokinetic and technological profiles than monoclonal antibodies, became an attractive research topic. Nevertheless, still few works have been published on the chemical features of possible binding sites. In this work, we applied a novel computational protocol based on the combination of the ab initio Fragment Molecular Orbital (FMO) method and a newly developed GRID-DRY approach in order to characterize the PD-L1 binding sites, starting from PD-1/PD-L1 and PD-L1/BMS-ligands (Bristol–Mayers Squibb ligands) complexes. The FMO method allows the calculation of the pair-residues as well as the ligand–residues interactions with ab initio accuracy, whereas the GRID-DRY approach is an effective tool to investigate hydrophobic interactions, not easily detectable by ab initio methods. The present GRID-DRY protocol is able to determine the energy contributions of each ligand atoms to each hydrophobic interaction, both qualitatively and quantitatively. We were also able to identify the three specific hot regions involved in PD-1/PD-L1 protein–protein interaction and in PD-L1/BMS-ligand interactions, in agreement with preceding theoretical/experimental results, and to suggest a specific pharmacophore for PD-L1 inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

BMS:

Bristol–Mayers Squibb

DRY:

Hydrophobic probe

Ees :

Electrostatic energy

Eex :

Exchange repulsion energy

Ect :

Charge transfer energy

Edisp :

Dispersion energy

Esolv :

Solvation energy

EEL:

Electrostatic energy

EHB:

Hydrogen-bonding energy

ELJ:

Lennard–Jones energy

ES:

Entropic energy

FMO:

Fragment molecular orbitals

G:

Region on PD-L1 surface delimited by Asp26, Asp122, Tyr123, Lys124 and Arg125

HE:

Hydrophobic interaction energy

HOP:

Hybrid orbital projection

HTRF:

Homogenous time resolved fluorescence

MAO:

Mechanism of action

MIFs:

Molecular interaction fields

N1:

Neutral flat N–H probe

O:

Carbonyl oxygen probe

OH2:

Water molecule probe

PCM:

Polarizable continuum model

PD-1:

Programmed cell death protein 1

PDB:

Protein data bank

PD-L1:

Programmed cell death protein 1 ligand

PIE:

Pair interaction energy

PIEDA:

Pair interaction energy decomposition analysis

PPI:

Protein–protein interaction

P1:

Region on PD-L1 surface composed of Tyr56, Glu58, Arg113, Met115 and Tyr123

P2:

Region on PD-L1 surface composed of Met115, Ala121 and Ty123

QSAR:

Quantitative structure−activity relationship

R2 :

Squared Pearson’s correlation coefficient

RI-MP2:

Second-order Møller–Plesset perturbation theory (MP2) gradient with resolution of the identity (RI) approximation

3D:

Three-dimensional

SAR:

Structure–activity relationship

References

  1. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12:252–264

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Mahoney KM, Freeman GJ, McDermott DF (2015) The next immune-checkpoint inhibitors: PD-1/PD-L1 blockade in melanoma, PD-1/PD-L1 inhibitors. Clin Ther 37(4):764–782

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Blank C, Gajewski TF, Mackensen A (2005) Interaction of PD-L1 on tumor cells with PD-1 on tumor-specific T cells as a mechanism of immune evasion: implications for tumor immunotherapy. Cancer Immunol Immunother 54:307–314

    CAS  PubMed  Google Scholar 

  4. Wilkinson E (2015) Nivolumab success in untreated metastatic melanoma. Lancet Oncol 16:e9

    PubMed  Google Scholar 

  5. Bagcchi S (2014) Pembrolizumab for treatment of refractory melanoma. Lancet Oncol 15:e419

    PubMed  Google Scholar 

  6. Lipson EJ, Forde PM, Hammers H, Emens LA, Taube JM, Topolian SL (2015) Antagonists of PD-1 and PD-L1 in cancer treatment. Semin Oncol 42:587–600

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N (2002) Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci USA 99:12293–12297

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, Sosman JA, McDermott DF, Powderly JD, Gettinger SN, Kohrt HE, Horn L, Lawrence DP, Rost S, Leabman M, Xiao Y, Mokatrin A, Koeppen H, Hegde PS, Mellman I, Chen DS, Hodi FS (2014) Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515:563–567

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Brahmer JR, Tykodi SS, Chow LQM, Hwu W, Topalian SL, Hwu P, Drake CG, Camacho LH, Kauh J, Odunsi K, Pitot CH, Hamid O, Bhatia S, Martins R, Eaton K, Chen S, Salay TM, Alaparthy S, Grosso JF, Korman AJ, Parker SM, Agrawal S, Goldberg SM, Pardoll DM, Gupta A, Wigginton JM (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366:2455–2465

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Philips GK, Atkins M (2015) Therapeutic uses of anti-PD-1 and anti-PD-L1 antibodies. Int Immunol 27:39–46

    CAS  PubMed  Google Scholar 

  11. Naidoo J, Page DB, Li BT, Connell LC, Schindler K, Lacouture ME, Postow MA, Wolchok JD (2015) Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann Oncol 26:2375–2391

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen T, Li Q, Liu Z, Chen Y, Feng F, Sun H (2019) Peptide based and small synthetic molecule inhibitors on PD/PD-L1 pathway: a new choice for immunotherapy? Eur J Med Chem 161:378–398

    CAS  PubMed  Google Scholar 

  13. Zhan M, Hu X, Liu X, Ruan B, Xu J, Liao C (2016) From monoclonal antibodies to small molecules: the development of inhibitors targeting the PD-1/PD-L1 pathway. Drug Discovery Today 21(6):1027–1036

    CAS  PubMed  Google Scholar 

  14. Ribas A, Wolchok JD (2018) Cancer immunotherapy using checkpoint blockade. Science 359:1350–1355

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Chowdhury PS, Chamoto K, Honjo T (2018) Combination therapy strategies for improving PD-1 blockade efficacy: a new era in cancer immunotherapy. J Intern Med 283:110–120

    CAS  PubMed  Google Scholar 

  16. Chupak LS, Zheng X (2015) Compounds useful as immunomodulators. WO2015034820A1

  17. Chupak LS, Ding M, Martin SW, Zheng X, Hewawasam P, Connolly TP, Xu N, Yeung K-S, Zhu J, Langley DR, Tenney DJ, Scola PM, Mingo PA (2015) Compounds useful as immunomodulators. WO2015160641

  18. Abdel-Magid AF (2015) Inhibitors of the PD-1/PD-L1 pathway can mobilize the immune system: an innovative potential therapy for cancer and chronic infections. ACS Med Chem Lett 6:489–490

    PubMed  PubMed Central  Google Scholar 

  19. Zak KM, Grudnik P, Guzik K, Zieba BJ, Musielak B, Dömling A, Dubin G, Holak TA (2016) Structural basis for small molecule targeting of the programmed death ligand 1 (PD-L1). Oncotarget 7:30323–30335

    PubMed  PubMed Central  Google Scholar 

  20. Guzik K, Zak KM, Grudnik P, Magiera K, Musielak B, Törner R, Skalniak L, Dömling A, Dubin G, Holak TA (2017) Small-molecule inhibitors of the programmed cell death-1/programmed death-ligand 1 (PD-1/PD-L1) interaction via transiently induced protein states and dimerization of PD-L1. J Med Chem 60(77):5857–5867

    CAS  PubMed  Google Scholar 

  21. Skalniak L, Zak KM, Guzik K, Magiera K, Musielak B, Pachota M, Szelazek B, Kocik J, Grudnik P, Tomala M, Krzanik S, Pyrc K, Dömling A, Dubin G, Holak T (2017) A small-molecule inhibitors of PD-1/PD-L1 immune checkpoint alleviate the PD-L1-induced exhaustion of T-cells. Oncotarget 8:72167–72181

    PubMed  PubMed Central  Google Scholar 

  22. Sasikumar PGN, Ramachandra M, Naremaddepalli SSS (2015) 1,2,4-Oxadiazole derivatives as immunomodulators. US20150073024

  23. Sasikumar PGN, Ramachandra M, Vadlamani SK, Vemula KR, Satyam LK, Subbarao K, Shrimali RK, Kandepu S (2013) Immunosuppression modulating compounds. EP2585099A2

  24. Sasikumar PGN, Ramachandra M, Naremaddepalli SSS (2013) Peptidomimetic compounds as immunomodulators. WO2013132317A8

  25. Shrimali KR, Subbarao K (2012) Therapeutic compounds for immunomodulation. WO2012168944A1

  26. Miller MM, Mapelli C, Allen MP, Bowsher MS, Boy KM, Gillis EP, Langley DR, Mull E, Poirier MA, Sanghvi N (2014) Macrocyclic inhibitors of the pd-1/pd-l1 and cd80(b7-1)/pd-l1 protein/protein interactions. WO2014151634A1

  27. Sasikumar PGN, Ramachandra M, Naremaddepalli SSS (2015) Cyclic peptidomimetic compounds as immunomodulators. WO2015033303A1

  28. Magiera-Mularz K, Skalniak L, Zak KM, Musielak B, Rudzinska-Szostak E, Berlicki Ł, Kocik J, Grudnik P, Sala D, Zarganes-Tzitzikas T, Shaabani S, Dömling A, Dubin G, Holak TA (2017) Bioactive macrocyclic inhibitors of the PD-1/PD-L1 immune checkpoint. Angew Chemie Int Ed 56:13732–13735

    CAS  Google Scholar 

  29. Weinmann H (2016) Cancer immunotherapy: selected targets and small-molecule modulators. ChemMedChem 11:450–466

    CAS  PubMed  Google Scholar 

  30. Guzik K, Tomala M, Muszak D, Konieczny M, Hec A, Błaszkiewicz U, Pustuła M, Butera R, Dömling A, Holak TA (2019) Development of the inhibitors that target the PD-1/PD-L1 interaction—a brief look at progress on small molecules, peptides and macrocycles. Molecules 24:2071

    CAS  PubMed Central  Google Scholar 

  31. Wells JA, McClendon CL (2007) Reaching for high-hanging fruit in drug discovery at protein–protein interfaces. Nature 450:1001–1009

    CAS  PubMed  Google Scholar 

  32. Arkin RM, Wells JA (2004) Small-molecule inhibitors of protein–protein interactions: progressing towards the dream. Nat Rev Drug Discovery 3:301

    CAS  PubMed  Google Scholar 

  33. Fry DC (2006) Protein–protein interactions as targets for small molecule drug discovery. Biopolymers 84:535–552

    CAS  PubMed  Google Scholar 

  34. Bogan AA, Thorn KS (1998) Anatomy of hot spots in protein interfaces. J Mol Biol 280:1–9

    CAS  PubMed  Google Scholar 

  35. Li J, Liu Q (2009) ‘Double water exclusion’: a hypothesis refining the O-ring theory for the hot spots at protein interfaces. Bioinformatics 25(6):743–750

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Moreira IS, Fernandes PA, Ramos MJ (2007) Hot spots—a review of the protein–protein interface determinant amino-acid residues. Proteins 68:803–812

    CAS  PubMed  Google Scholar 

  37. Kortemme T, Baker D (2002) A simple physical model for binding energy hot spots in protein–protein complexes. PNAS 99(22):14116–14121

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Morrow JK, Zhang S (2012) Computational prediction of hot spot residues. Curr Pharm Des 18(9):1255–1265

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Koes D, Khoury K, Huang Y, Wang W, Bista M, Popowicz GM, Wolf S, Holak TA, Dömling A, Camacho CJ (2012) Enabling large-scale design, synthesis and validation of small molecule protein-protein antagonists. PlosOne 7(3):e32839

    CAS  Google Scholar 

  40. Mora JS, Assi SA, Fernandez-Fuentes N (2010) Presaging critical residues in protein interfaces-web server (PCRPi-W): a web server to chart hot spots in protein interfaces. PlosOne 5(8):e12352

    Google Scholar 

  41. Fedorov DG, Nagata T, Kitaura K (2012) Exploring chemistry with the fragment molecular orbital method. Phys Chem Chem Phys 14:7562–7577

    CAS  PubMed  Google Scholar 

  42. Kitaura K, Ikeo E, Asada T, Nakano T, Uebayasi M (1999) Fragment molecular orbital method: an approximate computational method for large molecules. Chem Phys Lett 313:701–706

    CAS  Google Scholar 

  43. Nakano T, Kaminuma T, Sato T, Akiyama Y, Uebayasi M, Kitaur K (2000) Fragment molecular orbital method: application to polypeptides. Chem Phys Lett 318:614–618

    CAS  Google Scholar 

  44. Nagase K, Kobayashi H, Yoshikawa E, Kurita N (2009) Ab initio molecular orbital calculations on specific interactions between urokinase-type plasminogen activator and its receptor. J Mol Graphics Modell 28:46–53

    CAS  Google Scholar 

  45. Paciotti R, Storchi L, Marrone A (2019) An insight of early PrP-E200K aggregation by combined molecular dynamics/fragment molecular orbital approaches. Proteins 87:51–61

    CAS  PubMed  Google Scholar 

  46. Storchi L, Paciotti R, Re N, Marrone A (2015) Investigation of the molecular similarity in closely related protein systems: the PrP case study. Proteins 83:1751–1765

    CAS  PubMed  Google Scholar 

  47. Fukuzawa K, Komeiji Y, Mochizuki Y, Kato A, Nakano T, Tanaka S (2006) Intra- and intermolecular interactions between cyclic-AMP receptor protein and DNA: ab initio fragment molecular orbital study. J Comput Chem 27:948–960

    CAS  PubMed  Google Scholar 

  48. Nemoto T, Fedorov DG, Uebayasi M, Kanazawa K, Kitaura K, Komeiji Y (2005) Ab initio fragment molecular orbital (FMO) method applied to analysis of the ligand–protein interaction in a pheromone-binding protein. Comput Biol Chem 29:434–439

    CAS  PubMed  Google Scholar 

  49. Lim HC, Chun JH, Hwang SB, Kim JW, No KT (2018) Specific interactions of protein-protein interaction between human programmed death 1 (PD-1) and its ligand 1 (PD-L1) with ab initio fragment molecular orbital method. Biophys J 114(3):423A

    Google Scholar 

  50. Lim H, Chun J, Jin X, Kim J, Yoon JH, No KT (2019) Investigation of protein-protein interactions and hot spot region between PD-1 and PD-L1 by fragment molecular orbital method. Sci Rep 9:16727

    PubMed  PubMed Central  Google Scholar 

  51. Goodford PJ (1985) A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J Med Chem 28:849–857

    CAS  PubMed  Google Scholar 

  52. Zak KM, Kitel R, Przetocka S, Golik P, Guzik K, Musielak B, Dömling A, Dubin G, Holak TA (2015) Structure of the complex of human programmed death 1, PD-1, and its ligand PD-L1. Structure 23:2341–2348

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W (2013) Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J Comput Aid Mol Des 27(3):221–234

    Google Scholar 

  54. Schrödinger Release 2018–3: Schrödinger Suite 2018–3 Protein Preparation Wizard; Epik, Schrödinger, LLC, New York, NY, 2016 Impact, Schrödinger, LLC, New York, NY, 2016; Prime, Schrödinger, LLC, New York, NY, 2018; Schrödinger Release 2018–3: Prime, Schrödinger, LLC, New York, NY, 2018; Schrödinger Release 2018–3: MacroModel, Schrödinger, LLC, New York, NY, 2018; Schrödinger Release 2018–3: LigPrep Schrödinger LLC, New York, NY (2018)

  55. Jacobson MP, Pincus DL, Rapp CS, Day TJF, Honig B, Shaw DE, Friesner RA (2004) A hierarchical approach to all-atom protein loop prediction. Proteins 55:351–367

    CAS  PubMed  Google Scholar 

  56. Jacobson MP, Friesner RA, Xiang Z, Honig B (2002) On the role of crystal packing forces in determining protein side chain conformations. J Mol Biol 320:597–608

    CAS  PubMed  Google Scholar 

  57. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363

    CAS  Google Scholar 

  58. Gordon MS, Schmidt MW (2005) In: Dykstra CE, Frenking G, Kim KS, Scuseria GE (eds) Theory and applications of computational chemistry: the first forty years. Elsevier, Amsterdam, pp 1167–1189

  59. Ishikawa T, Kuwata K, Ishikawa T, Kuwata K (2009) Fragment molecular orbital calculation using the RI-MP2 method. Chem Phys Lett 474:195–198

    CAS  Google Scholar 

  60. Ishikawa T, Kuwata K (2012) RI-MP2 gradient calculation of large molecules using the fragment molecular orbital method. J Phys Chem Lett 3:375–379

    CAS  PubMed  Google Scholar 

  61. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3093

    CAS  PubMed  Google Scholar 

  62. Fedorov DG, Kitaura K, Li H, Jensen JH, Gordon MS (2006) The polarizable continuum model (PCM) interfaced with the fragment molecular orbital method (FMO). J Comput Chem 27:976–985

    CAS  PubMed  Google Scholar 

  63. Li H, Fedorov DG, Nagata T, Kitaura K, Jensen JH, Gordon MS (2010) Energy gradients in combined fragment molecular orbital and polarizable continuum model (FMO/PCM) calculation. J Comput Chem 31:778–790

    CAS  PubMed  Google Scholar 

  64. Fedorov DG, Kitaura K (2007) Pair interaction energy decomposition analysis. J Comput Chem 28:222–237

    CAS  PubMed  Google Scholar 

  65. Tanaka S, Mochizuki Y, Komeiji Y, Okiyama Y, Fukuzawa K (2014) Electron-correlated fragment-molecular-orbital calculations for biomolecular and nano systems. Phys Chem Chem Phys 16:10310–10344

    CAS  PubMed  Google Scholar 

  66. Ozawa M, Ozawa T, Ueda K (2017) Application of the fragment molecular orbital method analysis to fragment-based drug discovery of BET (bromodomain and extra-terminal proteins) inhibitors. J Mol Graphics Modell 74:73–82

    CAS  Google Scholar 

  67. https://www.moldiscovery.com/soft_grid.php. Accessed February 2019

  68. Von Itzstein M, Wu W, Kok GB, Pegg MS, Dyason JC, Jin B, Phan TV, Smythe ML, White HF, Oliver SW, Colman PM, Varghese JN, Ryan DM, Woods JM, Bethell RC, Hotham VJ, Cameron JM, Penn CR (1993) Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature 363:418–423

    Google Scholar 

  69. Milletti F, Storchi L, Sforna G, Cruciani G (2007) New and original pKa prediction method using grid molecular interaction fields. J Chem Inf Model 47:2172–2181

    CAS  PubMed  Google Scholar 

  70. Milletti F, Storchi L, Sforna G, Cross S, Cruciani G (2009) Tautomer enumeration and stability prediction for virtual screening on large chemical databases. J Chem Inf Model 49:68–75

    CAS  PubMed  Google Scholar 

  71. Ahlstrom MM, Ridderströ M, Luthman K, Zamora I (2005) Virtual screening and scaffold hopping based on GRID molecular interaction fields. J Chem Inf Model 45:1313–1323

    PubMed  Google Scholar 

  72. Bergmann R, Linusson A, Zamora I (2007) SHOP: scaffold hopping by GRID-based similarity searches. J Med Chem 50:2708–2717

    CAS  PubMed  Google Scholar 

  73. Pastor M, Cruciani G, McLay I, Pickett S, Clementi S (2000) Grid-independent descriptors (GRIND): a novel class of alignment-independent three-dimensional molecular descriptors. J Med Chem 43:3233–3243

    CAS  PubMed  Google Scholar 

  74. Cruciani G, Carosati E, De Boeck B, Ethirajulu K, Mackie C, Howe T, Vianello R (2005) MetaSite: understanding metabolism in human cytochromes from the perspective of the chemist. J Med Chem 48:6970–6979

    CAS  PubMed  Google Scholar 

  75. G. Cruciani (ed) Molecular Interaction Fields: Applications in drug discovery and ADME prediction, vol 27, Chapter 1. First published: 26 October 2005 Copyright © 2006 Wiley-VCH Verlag GmbH & Co. KGaA

  76. G. van Rossum (1995) Python tutorial. Technical report CS-R9526, Centrum voor Wiskunde en Informatica (CWI), Amsterdam.

  77. Heifetz A, Chudyk EI, Gleave L, Aldeghi M, Cherezov V, Fedorov DG, Biggin PC, Bodkin MJ (2016) The fragment molecular orbital method reveals new insight into the chemical nature of GPCR−ligand interactions. J Chem Inf Model 56:159–172

    CAS  PubMed  Google Scholar 

  78. Fedorov DG, Kitaura K (2016) Subsystem analysis for the fragment molecular orbital method and its application to protein−ligand binding in solution. J Phys Chem A 120:2218–2231

    CAS  PubMed  Google Scholar 

  79. Sunshine J, Taube JM (2015) PD-1/PD-L1 inhibitors. Curr Opin Pharmacol 23:32–38

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Sun X, Liang L, Gu J, Zhuo W, Yan X, Xie T, Wu Z, Liu X, Gou X, Liu W, He G, Gan Y, Chang S, Shi H, Hu J (2019) Inhibition of programmed cell death protein ligand-1 (PD-L1) by benzyl ether derivatives: analyses of conformational change, molecular recognition and binding free energy. J Biomol Struct Dyn 37(18):4801–4812

    CAS  PubMed  Google Scholar 

  81. Pascolutti R, Sun X, Kao J, Maute RL, Ring AM, Bowman GR, Kruse AC (2016) Structure and dynamics of PD-L1 and an ultra-high-affinity PD-1 receptor mutant. Structure 24:1719–1728

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Shi D, Zhou S, Liu X, Zhao C, Liu H, Yao X (2018) Understanding the structural and energetic basis of PD-1 and monoclonal antibodies bound to PD-L1: a molecular modeling perspective. BBA General Subjects 1862:576–588

    CAS  PubMed  Google Scholar 

  83. Ding H, Liu H (2019) Mapping the binding hot spots on human programmed cell death 1 and its ligand with free-energy simulations. J Chem Inf Model. https://doi.org/10.1021/acs.jcim.9b00337

    Article  PubMed  Google Scholar 

  84. Perry E, Mills JJ, Zhao B, Wang F, Sun Q, Christov PP, Tarr JC, Rietz TA, Olejniczak ET, Lee T, Fesik S (2019) Fragment-based screening of programmed death ligand 1 (PD-L1). Bioorg Med Chem Lett 29(6):786–790

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Mejías C, Guirola O (2019) Pharmacophore model of immunocheckpoint protein PD-L1 by cosolvent molecular dynamics simulations. J Mol Graphics Modell 91:105–111

    Google Scholar 

  86. Eyrisch S, Helms V (2009) What induces pocket openings on protein surface patches involved in protein–protein interactions? J Comput Aid Mol Des 23:73–86

    CAS  Google Scholar 

  87. Guo W, Wisniewski JA, Ji H (2014) Hot spot-based design of small-molecule inhibitors for protein–protein interactions. Bioorg Med Chem Lett 24:2546–2554

    CAS  PubMed  Google Scholar 

  88. Metz A, Pfleger C, Kopitz H, Pfeiffer-Marek S, Baringhaus K, Gohlke H (2011) Hot spots and transient pockets: predicting the determinants of small-molecule binding to a protein-protein interface. J Chem Inf Model 52:120–133

    PubMed  Google Scholar 

  89. Stank A, Kokh DB, Fuller JC, Wade RC (2016) Protein binding pocket dynamics. Acc Chem Res 49:809–815

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We thank the Ministry of Education, University and Research (MIUR) for financial support. Moreover, we are thankful to Prof. Alessandro Marrone for his suggestions and useful discussions.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Roberto Paciotti or Loriano Storchi.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1388 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paciotti, R., Agamennone, M., Coletti, C. et al. Characterization of PD-L1 binding sites by a combined FMO/GRID-DRY approach. J Comput Aided Mol Des 34, 897–914 (2020). https://doi.org/10.1007/s10822-020-00306-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-020-00306-0

Keywords

Navigation