Skip to main content

Advertisement

Log in

An activity prediction model for steroidal and triterpenoidal inhibitors of Acetylcholinesterase enzyme

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Nowadays, the importance of computational methods in the design of therapeutic agents in a more efficient way is indisputable. Particularly, these methods have been important in the design of novel acetylcholinesterase enzyme inhibitors related to Alzheimer’s disease. In this sense, in this report a computational model of linear prediction of acetylcholinesterase inhibitory activity of steroids and triterpenes is presented. The model is based in a correlation between binding energies obtained from molecular dynamic simulations (after docking studies) and \(\hbox {IC}_{{50}}\) values of a training set. This set includes a family of natural and semi-synthetic structurally related alkaloids reported in bibliography. These types of compounds, with some structural complexity, could be used as building blocks for the synthesis of many important biologically active compounds Therefore, the present study proposes an alternative based on the use of conventional and easily accessible tools to make progress on the rational design of molecules with biological activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gammon K (2014) Nature 515:299. https://doi.org/10.1038/nj7526-299a

    Article  PubMed  Google Scholar 

  2. Patterson C (2018) World Alzheimer report 2018. The state of the art of dementia research: New frontiers. Tech. rep., Alzheimer’s Disease International

  3. World Alzheimer report (2019) Attitudes to dementia. Tech. rep., Alzheimer’s Disease International

  4. Wimo A, Jönsson L, Bond J, Prince M, Winblad B (2013) Alzheimer’s Dementia 9(1):1. https://doi.org/10.1016/j.jalz.2012.11.006

    Article  PubMed  Google Scholar 

  5. Mount C, Downton C (2006) Nat Med 12:780. https://doi.org/10.1038/nm0706-780

    Article  CAS  PubMed  Google Scholar 

  6. Haas C (2012) J Alzheimer’s Dis 28:241. https://doi.org/10.3233/JAD-2011-110986

    Article  Google Scholar 

  7. Kumar A, Singh A (2015) Ekavali. Pharmacol Rep 67(2):195. https://doi.org/10.1016/j.pharep.2014.09.004

    Article  CAS  PubMed  Google Scholar 

  8. Hurtado-Puerto AM, Russo C, Fregni F (2018) Alzheimer’s disease. Springer, New York

    Google Scholar 

  9. Husna Ibrahim N, Yahaya MF, Mohamed W, Teoh SL, Hui CK, Kumar J (2020) Front Pharmacol 11:261. https://doi.org/10.3389/fphar.2020.00261

    Article  PubMed  PubMed Central  Google Scholar 

  10. Montanari S, Bartolini M, Neviani P, Belluti F, Gobbi S, Pruccoli L, Tarozzi A, Falchi F, Andrisano V, Miszta P, Cavalli A, Filipek S, Bisi A, Rampa A (2016) ChemMedChem 11(12):1296. https://doi.org/10.1002/cmdc.201500392

    Article  CAS  PubMed  Google Scholar 

  11. Prati F, Bergamini C, Fato R, Soukup O, Korabecny J, Andrisano V, Bartolini M, Bolognesi ML (2016) ChemMedChem 11(12):1284. https://doi.org/10.1002/cmdc.201600014

    Article  CAS  PubMed  Google Scholar 

  12. Viayna E, Gómez T, Galdeano C, Ramríez L, Ratia M, Badia A, Clos MV, Verdaguer E, Junyent F, Camins A, Pallàs M, Bartolini M, Mancini F, Andrisano V, Arce MP, Rodríguez-Franco MI, Bidon-Chanal A, Luque FJ, Camps P, Muñoz-Torrero D (2010) ChemMedChem 5(11):1855. https://doi.org/10.1002/cmdc.201000322

    Article  CAS  PubMed  Google Scholar 

  13. Galdeano C, Viayna E, Arroyo P, Bidon-Chanal A, Ramon Blas J, Munoz-Torrero D, Javier Luque F (2010) Curr Pharm Des 16(25):2818. https://doi.org/10.2174/138161210793176536

    Article  CAS  PubMed  Google Scholar 

  14. Bachurin SO, Bovina EV, Ustyugov AA (2017) Med Res Rev 37(5):1186. https://doi.org/10.1002/med.21434

    Article  CAS  PubMed  Google Scholar 

  15. Cole MA, Seabrook GR (2020) Alzheimer’s Dementia 6(1):e12009. https://doi.org/10.1002/trc2.12009

    Article  PubMed  PubMed Central  Google Scholar 

  16. Makin S (2018) Nature 559(7715):S4–S7. https://doi.org/10.1038/d41586-018-05719-4

    Article  CAS  PubMed  Google Scholar 

  17. Alkadhi K, Eriksen J (2011) Curr Neuropharmacol 9(4):586. https://doi.org/10.2174/157015911798376235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Carreiras MC, Mendes E, Perry MJ, Francisco AP, Marco-Contelles J (2013) Curr Top Med Chem 13(15):1745. https://doi.org/10.2174/15680266113139990135

    Article  CAS  PubMed  Google Scholar 

  19. Contestabile A (2011) Behav Brain Res 221(2):334. https://doi.org/10.1016/j.bbr.2009.12.044

    Article  CAS  PubMed  Google Scholar 

  20. Whitehouse P, Price D, Struble R, Clark A, Coyle J, Delon M (1982) Science 215(4537):1237. https://doi.org/10.1126/science.7058341

    Article  CAS  PubMed  Google Scholar 

  21. Chrispin P (1995) The Lancet 345:1248. https://doi.org/10.5555/uri:pii:S0140673695920366

    Article  CAS  Google Scholar 

  22. Liu JS, Zhu YL, Yu CM, Zhou YZ, Han YY, Wu FW, Qi BF (1986) Can J Chem 64(4):837. https://doi.org/10.1139/v86-137

    Article  CAS  Google Scholar 

  23. Ha GT, Wong RK, Zhang Y (2011) Chem Biodivers 8(7):1189. https://doi.org/10.1002/cbdv.201000269

    Article  CAS  PubMed  Google Scholar 

  24. Wilcock GK, Lilienfeld S, Gaens E (2000) BMJ 321(7274):1445. https://doi.org/10.1136/bmj.321.7274.1445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Boit HG (1954) Chem Berichte 87(5):724. https://doi.org/10.1002/cber.19540870517

    Article  CAS  Google Scholar 

  26. Quinn DM (1987) Chem Rev 87(5):955. https://doi.org/10.1021/cr00081a005

    Article  CAS  Google Scholar 

  27. Silman I, Sussman JL (2008) Chemico-Biol Interact 175(1–3):3. https://doi.org/10.1016/j.cbi.2008.05.035

    Article  CAS  Google Scholar 

  28. Dvir H, Silman I, Harel M, Rosenberry TL, Sussman JL (2010) Chemico-Biol Interact 187(1–3):10. https://doi.org/10.1016/j.cbi.2010.01.042

    Article  CAS  Google Scholar 

  29. Cras P, Kawai M, Lowery D, Gonzalez-DeWhitt P, Greenberg B, Perry G (1991) Proc Natl Acad Sci 88(17):7552. https://doi.org/10.1073/pnas.88.17.7552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jakob-Roetne R, Jacobsen H (2009) Angew Chem Int Ed 48(17):3030. https://doi.org/10.1002/anie.200802808

    Article  CAS  Google Scholar 

  31. Dunkel PI, Chai CL, Sperlágh B, Huleatt PB, Mátyus P (2012) Expert Opin Investig Drugs 21(9):1267. https://doi.org/10.1517/13543784.2012.703178

    Article  CAS  PubMed  Google Scholar 

  32. Zinchenko E, Navolokin N, Shirokov A, Khlebtsov B, Dubrovsky A, Saranceva E, Abdurashitov A, Khorovodov A, Terskov A, Mamedova A, Klimova M, Agranovich I, Martinov D, Tuchin V, Semyachkina-Glushkovskaya O, Kurts J (2019) Biomed Opt Express 10(8):4003. https://doi.org/10.1364/BOE.10.004003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. De Ferrari GV, Canales MA, Shin I, Weiner LM, Silman I, Inestrosa NC (2001) Biochemistry 40(35):10447. https://doi.org/10.1021/bi0101392

    Article  CAS  PubMed  Google Scholar 

  34. Inestrosa NC, Alvarez A, Pérez CA, Moreno RD, Vicente M, Linker C, Casanueva OI, Soto C, Garrido J (1996) Neuron 16:881. https://doi.org/10.1016/S0896-6273(00)80108-7

    Article  CAS  PubMed  Google Scholar 

  35. Rees T, Hammond P, Soreq H, Younkin S, Brimijoin S (2003) Neurobiol Aging 24:777. https://doi.org/10.1016/S0197-4580(02)00230-0

    Article  CAS  PubMed  Google Scholar 

  36. Muñoz FJ, Inestrosa NC (1999) FEBS Lett 450(3):205. https://doi.org/10.1016/S0014-5793(99)00468-8

    Article  PubMed  Google Scholar 

  37. Bartolini M, Bertucci C, Cavrini V, Andrisano V (2003) Biochem Pharmacol 65(3):407. https://doi.org/10.1016/S0006-2952(02)01514-9

    Article  CAS  PubMed  Google Scholar 

  38. Piazzi L, Rampa A, Bisi A, Gobbi S, Belluti F, Cavalli A, Bartolini M, Andrisano V, Valenti P, Recanatini M (2003) J Med Chem 46(12):2279. https://doi.org/10.1021/jm0340602

    Article  CAS  PubMed  Google Scholar 

  39. Bolognesi ML, Cavalli A, Valgimigli L, Bartolini M, Rosini M, Andrisano V, Recanatini M, Melchiorre C (2007) J Med Chem 50(26):6446. https://doi.org/10.1021/jm701225u

    Article  CAS  PubMed  Google Scholar 

  40. Munoz-Torrero D (2008) Curr Med Chem 15(24):2433. https://doi.org/10.2174/092986708785909067

    Article  CAS  PubMed  Google Scholar 

  41. Agatonovic-Kustrin S, Kettle C, Morton DW (2018) Biomed Pharmacother 106:553. https://doi.org/10.1016/j.biopha.2018.06.147

    Article  CAS  PubMed  Google Scholar 

  42. Galdeano C, Viayna E, Sola I, Formosa X, Camps P, Badia A, Clos MV, Relat J, Ratia M, Bartolini M, Mancini F, Andrisano V, Salmona M, Minguillón C, González-Muñoz GC, Rodrí-guez-Franco MI, Bidon-Chanal A, Luque FJ, Muñoz-Torrero D (2012) J Med Chem 55(2):661. https://doi.org/10.1021/jm200840c

    Article  CAS  PubMed  Google Scholar 

  43. Cai P, Fang SQ, Yang HL, Yang XL, Liu QH, Kong LY, Wang XB (2018) Eur J Med Chem 157:161. https://doi.org/10.1016/j.ejmech.2018.08.005

    Article  CAS  PubMed  Google Scholar 

  44. Kryger G, Silman I, Sussman JL (1999) Structure 7(3):297. https://doi.org/10.1016/S0969-2126(99)80040-9

    Article  CAS  PubMed  Google Scholar 

  45. Cheung J, Rudolph MJ, Burshteyn F, Cassidy MS, Gary EN, Love J, Franklin MC, Height JJ (2012) J Med Chem 55(22):10282. https://doi.org/10.1021/jm300871x PMID: 23035744

    Article  CAS  PubMed  Google Scholar 

  46. Gerlits O, Ho KY, Cheng X, Blumenthal D, Taylor P, Kovalevsky A, Radić Z (2019) Chemico-Biol Interact 309:108698. https://doi.org/10.1016/j.cbi.2019.06.011

    Article  CAS  Google Scholar 

  47. Houghton PJ, Ren Y, Howes MJ (2006) Nat Prod Rep 23:181. https://doi.org/10.1039/B508966M

    Article  CAS  PubMed  Google Scholar 

  48. Mukherjee PK, Kumar V, Mal M, Houghton PJ (2007) Phytomedicine 14:289. https://doi.org/10.1016/j.phymed.2007.02.002

    Article  CAS  PubMed  Google Scholar 

  49. Konrath EL, Passos CDS, Klein-Júnior LC, Henriques AT (2013) J Pharm Pharmacol 65(12):1701. https://doi.org/10.1111/jphp.12090

    Article  CAS  PubMed  Google Scholar 

  50. Burke MD, Schreiber SL (2004) Angew Chem Int Ed 43(1):46. https://doi.org/10.1002/anie.200300626

    Article  CAS  Google Scholar 

  51. Newman DJ, Cragg GM (2020) J Nat Prod 83(3):770. https://doi.org/10.1021/acs.jnatprod.9b01285

    Article  CAS  PubMed  Google Scholar 

  52. Davison EK, Brimble MA (2019) Curr Opin Chem Biol 52:1. https://doi.org/10.1016/j.cbpa.2018.12.007

    Article  CAS  PubMed  Google Scholar 

  53. García ME, Borioni JL, Cavallaro V, Puiatti M, Pierini AB, Murray AP, Peñéñory AB (2015) Steroids 104:95. https://doi.org/10.1016/j.steroids.2015.09.001

    Article  CAS  PubMed  Google Scholar 

  54. Sauvaître T, Barlier M, Herlem D, Gresh N, Chiaroni A, Guenard D, Guillou C (2007) J Med Chem 50(22):5311. https://doi.org/10.1021/jm070536w

    Article  CAS  PubMed  Google Scholar 

  55. Gilson M, Straatsma T, McCammon J, Ripoll D, Faerman C, Axelsen P, Silman I, Sussman J (1994) Science 263(5151):1276. https://doi.org/10.1126/science.8122110

    Article  CAS  PubMed  Google Scholar 

  56. Cheng S, Song W, Yuan X, Xu Y (2017) Sci Rep 7:3219. https://doi.org/10.1038/s41598-017-03088-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bermudez-Lugo JA, Rosales-Hernandez MC, Deeb O, Trujillo-Ferrara J, Correa-Basurto J (2011) Curr Med Chem 18(8):1122. https://doi.org/10.2174/092986711795029681

    Article  CAS  PubMed  Google Scholar 

  58. Daoud I, Melkemi N, Salah T, Ghalem S (2018) Comput Biol Chem 74:304. https://doi.org/10.1016/j.compbiolchem.2018.03.021

    Article  CAS  PubMed  Google Scholar 

  59. Cavas L, Topcam G, Gundogdu-Hizliates C, Ergun Y (2019) Interdisciplinary Sci 11(1):95. https://doi.org/10.1007/s12539-017-0245-4

    Article  CAS  Google Scholar 

  60. Hansson T, Marelius J, Åqvist J (1998) J Comput-Aid Mol Des 12(1):27. https://doi.org/10.1023/A:1007930623000

    Article  CAS  Google Scholar 

  61. Ul Haq Z, Halim SA, Uddin R, Madura JD (2010) J Mol Gr Model 28(8):870. https://doi.org/10.1016/j.jmgm.2010.03.007

    Article  CAS  Google Scholar 

  62. Lan NT, Vu KB, Dao Ngoc MK, Tran PT, Hiep DM, Tung NT, Ngo ST (2019) J Mol Gr Model 93:107441. https://doi.org/10.1016/j.jmgm.2019.107441

    Article  CAS  Google Scholar 

  63. Nascimento ÉCM, Oliva M, Andrés J (2018) J Comput-Aid Mol Des 32(5):607. https://doi.org/10.1007/s10822-018-0114-1

    Article  CAS  Google Scholar 

  64. Ngo ST, Mai BK, Hiep DM, Li MS (2015) Chem Biol Drug Des 86(4):546. https://doi.org/10.1111/cbdd.12518

    Article  CAS  PubMed  Google Scholar 

  65. Myers J, Grothaus G, Narayanan S, Onufriev A (2006) Proteins 63(4):928. https://doi.org/10.1002/prot.20922

    Article  CAS  PubMed  Google Scholar 

  66. Anandakrishnan R, Aguilar B, Onufriev AV (2012) Nucleic Acids Res 40(W1):W537. https://doi.org/10.1093/nar/gks375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Szegezdi J, Csizmadia F (2007) American chemical society spring meeting

  68. Boström J, Greenwood JR, Gottfries J (2003) J Mol Gr Model 21(5):449. https://doi.org/10.1016/S1093-3263(02)00204-8

    Article  Google Scholar 

  69. McGann MR, Almond HR, Nicholls A, Grant JA, Brown FK (2003) Biopolymers 68(1):76. https://doi.org/10.1002/bip.10207

    Article  CAS  PubMed  Google Scholar 

  70. McGaughey GB, Sheridan RP, Bayly CI, Culberson JC, Kreatsoulas C, Lindsley S, Maiorov V, Truchon JF, Cornell WD (2007) J Chem Inf Model 47(4):1504. https://doi.org/10.1021/ci700052x

    Article  CAS  PubMed  Google Scholar 

  71. Humphrey W, Dalke A, Schulten K (1996) J Mol Gr 14(1):33. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  Google Scholar 

  72. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) J Comput Chem 25(9):1157. https://doi.org/10.1002/jcc.20035

    Article  CAS  PubMed  Google Scholar 

  73. Jakalian A, Bush BL, Jack DB, Bayly CI (2000) J Comput Chem 21(2):132. https://doi.org/10.1002/(SICI)1096-987X(20000130)21:2<132::AID-JCC5>3.0.CO;2-P

    Article  CAS  Google Scholar 

  74. Wang J, Cieplak P, Kollman PA (2000) J Comput Chem 21(12):1049. https://doi.org/10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F

    Article  CAS  Google Scholar 

  75. Case D, Darden TA, Cheatham I, Simmerling CL, Wang J, Duke RE et al (2010) AMBER11. University of California, San Francisco

    Google Scholar 

  76. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79(2):926. https://doi.org/10.1063/1.445869

    Article  CAS  Google Scholar 

  77. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K (2005) J Comput Chem 26(16):1781. https://doi.org/10.1002/jcc.20289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Golosov AA, Karplus M (2007) J Phys Chem B 111(6):1482. https://doi.org/10.1021/jp065493u

    Article  CAS  PubMed  Google Scholar 

  79. Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE (2000) Acc Chem Res 33(12):889. https://doi.org/10.1021/ar000033j

    Article  CAS  PubMed  Google Scholar 

  80. Wang C, Nguyen PH, Pham K, Huynh D, Le TBN, Wang H, Ren P, Luo R (2016) J Comput Chem 37(27):2436. https://doi.org/10.1002/jcc.24467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ellman GL, Courtney KD, Andresjr V, Featherstone RM (1961) Biochem Pharmacol 7(2):88. https://doi.org/10.1016/0006-2952(61)90145-9

    Article  CAS  PubMed  Google Scholar 

  82. Choudhary MI, Devkota K, Nawaz SA, Shaheen F, ur Rahman A (2004) Helvetica Chimica Acta 87(5):1099. https://doi.org/10.1002/hlca.200490100

    Article  CAS  Google Scholar 

  83. ur Rahman A, ul Haq Z, Khalid A, Anjum S, Khan MR, Choudhary MI (2002) Helvetica Chimica Acta 85(2):678. https://doi.org/10.1002/1522-2675(200202)85:2<678::AID-HLCA678>3.0.CO;2-2

    Article  Google Scholar 

  84. Rouleau J, Iorga BI, Guillou C (2011) Eur J Med Chem 46(6):2193. https://doi.org/10.1016/j.ejmech.2011.02.073

    Article  CAS  PubMed  Google Scholar 

  85. Genheden S, Ryde U (2015) Expert Opin Drug Discov 10(5):449. https://doi.org/10.1517/17460441.2015.1032936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Yang CY, Wang S (2010) ACS Med Chem Lett 1(3):125. https://doi.org/10.1021/ml100026a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hou T, Wang J, Li Y, Wang W (2011) J Chem Inf Model 51(1):69. https://doi.org/10.1021/ci100275a

    Article  CAS  PubMed  Google Scholar 

  88. Weissenberg M (2001) Phytochemistry 58(3):501. https://doi.org/10.1016/S0031-9422(01)00185-6

    Article  CAS  PubMed  Google Scholar 

  89. Bhattacharya S, Kohli S, Chaudhary AS (2013) Aust-Asian J Cancer 12(3):199

    Google Scholar 

Download references

Acknowledgements

We would like to thank E. Daiann Sosa Carrizo for helpful comments and discussions and F. Brigante for the revision of this manuscript. This work was supported in part by the Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), the Agencia Nacional de Promoción Científica y Tecnológica (FONCYT, Argentina), the Agencia Córdoba Ciencia and the Secretaría de Ciencia y Técnica (SECYT) of the Universidad Nacional de Córdoba. INFIQC and IMBIV are jointly sponsored by CONICET and the Universidad Nacional de Córdoba. All calculations were performed with computational resources from the Centro de Computación de Alto Desempeño—Universidad Nacional de Córdoba (http://ccad.unc.edu.ar/), in particular the Mendieta Cluster that belongs to the Facultad de Matemática, Astronomía y Física, that is also part of SNCAD, República Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José L. Borioni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (PDF 2132 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borioni, J.L., Cavallaro, V., Pierini, A.B. et al. An activity prediction model for steroidal and triterpenoidal inhibitors of Acetylcholinesterase enzyme. J Comput Aided Mol Des 34, 1079–1090 (2020). https://doi.org/10.1007/s10822-020-00324-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-020-00324-y

Keywords

Navigation