Abstract
Experimental 3D structures of calcium channels with phenylalkylamines (PAAs) provide basis for further analysis of atomic mechanisms of these important cardiovascular drugs. In the crystal structure of the engineered calcium channel CavAb with Br-verapamil and in the cryo-EM structure of the Cav1.1 channel with verapamil, the ligands bind in the inner pore. However, there are significant differences between these structures. In the crystal structure the ligand ammonium group is much closer to the ion in the selectivity-filter region Site 3, which is most proximal to the inner pore, than in the cryo-EM structure. Here we used Monte Carlo energy minimizations to dock PAAs in calcium channels. Our computations suggest that in the crystal structure Site 3 is occupied by a water molecule rather than by a calcium ion. Analysis of the published electron density map does not rule out this possibility. In the cryo-EM structures the ammonium group of verapamil is shifted from the calcium ion in Site 3 either along the pore axis, towards the cytoplasm or away from the axis. Our unbiased docking reproduced these binding modes. However, in the cryo-EM structures detergent and lipid molecules interact with verapamil. When we removed these molecules, the nitrile group of verapamil bound to the calcium ion in Site 3. Models of Cav1.2 with different PAAs suggest similar binding modes and direct contacts of the ligands electronegative atoms with the calcium ion in Site 3. Such interactions explain paradoxes in structure–activity relationships of PAAs.





Similar content being viewed by others
Abbreviations
- BrVp:
-
Br-verapamil
- MC:
-
Monte Carlo
- MCM:
-
MC-minimizations
- PAA:
-
Phenylalkylamine
- RMS:
-
Root Mean Square
References
Zamponi GW, Striessnig J, Koschak A, Dolphin AC (2015) Pharmacol Rev 67(4):821
Hockerman GH, Peterson BZ, Johnson BD, Catterall WA (1997) Annu Rev Pharmacol Toxicol 37:361
Godfraind T (2017) Front Pharmacol 8:286
Cosconati S, Marinelli L, Lavecchia A, Novellino E (2007) J Med Chem 50(7):1504
Cheng RC, Tikhonov DB, Zhorov BS (2009) J Biol Chem 284(41):28332
Lipkind GM, Fozzard HA (2003) Mol Pharmacol 63(3):499
Tikhonov DB, Zhorov BS (2009) J Biol Chem 284(28):19006
Tikhonov DB, Zhorov BS (2008) J Biol Chem 283(25):17594
Li W, Shi G (2019) Pharmacol Res 139:153
Tang L, Gamal El-Din TM, Swanson TM, Pryde DC, Scheuer T, Zheng N, Catterall WA (2016) Nature 537(7618):117
Zhao Y, Huang G, Wu J, Wu Q, Gao S, Yan Z, Lei J, Yan N (2019) Cell 177(6):1495
Garden DP, Zhorov BS (2010) J Comput Aided Mol Des 24(2):91
Tikhonov DB, Zhorov BS (2012) Mol Pharmacol 82(1):97
Tikhonov DB, Zhorov BS (2017) J Gen Physiol 149(4):465
Zhorov BS (1981) J Struct Chem 22:4
Zhorov B (1983) J Struct Chem 23:649
Li Z, Scheraga HA (1987) Proc Natl Acad Sci USA 84(19):6611
Abagyan R, Argos P (1992) J Mol Biol 225(2):519
Tikhonov DB, Zhorov BS (2004) Biophys J 87(3):1526
Weiner SJ, Kollman PA, Case DA, Singh UC, Chio C, Alagona G, Profeta S, Weiner PK (1984) J Am Chem Soc 106:765
Weiner SJ, Kollman PA, Nguyen DT, Case DA (1986) J Comput Chem 7(2):230
Lazaridis T, Karplus M (1999) Proteins 35(2):133
Vilar S, Cozza G, Moro S (2008) Curr Top Med Chem 8(18):1555
Brooks CL, Pettitt M, Karplus M (1985) J Chem Phys 83:5897
Emsley P, Cowtan K (2004) Acta Crystallogr Sect D 60:2126
Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH (2010) Acta Crystallogr Sect D 66:213
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) J Comput Chem 25(13):1605
Zhorov BS, Tikhonov DB (2004) J Neurochem 88(4):782
Dilmac N, Hilliard N, Hockerman GH (2004) Mol Pharmacol 66(5):1236
Doring F, Degtiar VE, Grabner M, Striessnig J, Hering S, Glossman H (1996) J Biol Chem 271(20):11745
Hockerman GH, Johnson BD, Abbott MR, Scheuer T, Catterall WA (1997) J Biol Chem 272(30):18759
Hockerman GH, Johnson BD, Scheuer T, Catterall WA (1995) J Biol Chem 270(38):22119
Huber IG, Wappl-Kornherr E, Sinnegger-Brauns MJ, Hoda JC, Walter-Bastl D, Striessnig J (2004) J Biol Chem 279(53):55211
Schuster A, Lacinova L, Klugbauer N, Ito H, Birnbaumer L, Hofmann F (1996) EMBO J 15(10):2365
Johnson BD, Hockerman GH, Scheuer T, Catterall WA (1996) Mol Pharmacol 50(5):1388
Hering S, Savchenko A, Strubing C, Lakitsch M, Striessnig J (1993) Mol Pharmacol 43(5):820
Seydl K, Kimball D, Schindler H, Romanin C (1993) Pflugers Arch 424(5–6):552
Hescheler J, Pelzer D, Trube G, Trautwein W (1982) Pflugers Arch 393(4):287
Goll A, Glossmann H, Mannhold R (1986) Naunyn Schmiedebergs Arch Pharmacol 334(3):303
Mannhold R, Steiner R, Haas W, Kaufmann R (1978) Naunyn Schmiedebergs Arch Pharmacol 302(2):217
Mannhold R, Holtje HD, Koke V (1986) Arch Pharm (Weinheim) 319(11):990
Suzuki Y, Yamamoto N, Iimura Y, Kawano K, Kimura T, Nagato S, Ito K, Komatsu M, Norimine Y, Kimura M, Teramoto T, Kaneda Y, Hamano T, Niidome T, Yonaga M (2003) Bioorg Med Chem Lett 13(5):919
Lacinova L, Welling A, Bosse E, Ruth P, Flockerzi V, Hofmann F (1995) J Pharmacol Exp Ther 274(1):54
Striessnig J, Knaus HG, Grabner M, Moosburger K, Seitz W, Lietz H, Glossmann H (1987) FEBS Lett 212(2):247
Tikhonov DB, Zhorov BS (2005) Biophys J 88(1):184
Lipkind GM, Fozzard HA (2005) Mol Pharmacol 68(6):1611
Buyan A, Sun D, Corry B (2018) Proc Natl Acad Sci USA 115(14):E3135
Nguyen PT, DeMarco KR, Vorobyov I, Clancy CE, Yarov-Yarovoy V (2019) Proc Natl Acad Sci USA 116(8):2945
Gamal El-Din TM, Lenaeus MJ, Zheng N, Catterall WA (2018) Proc Natl Acad Sci USA 115(51):13111
Faraldo-Gomez JD, Kutluay E, Jogini V, Zhao Y, Heginbotham L, Roux B (2007) J Mol Biol 365(3):649
Payandeh J, Scheuer T, Zheng N, Catterall WA (2011) Nature 475(7356):353
Cordero-Morales JF, Vasquez V (2018) Curr Opin Struct Biol 51:92
Chemin J, Cazade M, Lory P (2014) Pflugers Arch 466(4):689
Acknowledgements
This work was supported by grants to BSZ from the Natural Sciences and Engineering Research Council of Canada (GRPIN-2014–04894) and Russian Foundation for Basic Research (17–04-00549-П). ZY acknowledges support from the National Key Research and Development Program of China (2017YFD0201400, 2017YFD0201403). Computations were performed using facilities provided by Compute Canada (www.computecanada.ca).
Author information
Authors and Affiliations
Corresponding authors
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Tikhonov, D.B., Lin, L., Yang, D.S.C. et al. Phenylalkylamines in calcium channels: computational analysis of experimental structures. J Comput Aided Mol Des 34, 1157–1169 (2020). https://doi.org/10.1007/s10822-020-00330-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10822-020-00330-0