Skip to main content
Log in

Pattern-free generation and quantum mechanical scoring of ring-chain tautomers

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

In contrast to the computational generation of conventional tautomers, the analogous operation that would produce ring-chain tautomers is rarely available in cheminformatics codes. This is partly due to the perceived unimportance of ring-chain tautomerism and partly because specialized algorithms are required to realize the non-local proton transfers that occur during ring-chain rearrangement. Nevertheless, for some types of organic compounds, including sugars, warfarin analogs, fluorescein dyes and some drug-like compounds, ring-chain tautomerism cannot be ignored. In this work, a novel ring-chain tautomer generation algorithm is presented. It differs from previously proposed solutions in that it does not rely on hard-coded patterns of proton migrations and bond rearrangements, and should therefore be more general and maintainable. We deploy this algorithm as part of a workflow which provides an automated solution for tautomer generation and scoring. The workflow identifies protonatable and deprotonatable sites in the molecule using a previously described approach based on rapid micro-pKa prediction. These data are used to distribute the active protons among the protonatable sites exhaustively, at which point alternate resonance structures are considered to obtain pairs of atoms with opposite formal charge. These pairs are connected with a single bond and a 3D undistorted geometry is generated. The scoring of the generated tautomers is performed with a subsequent density functional theory calculation employing an implicit solvent model. We demonstrate the performance of our workflow on several types of organic molecules known to exist in ring-chain tautomeric equilibria in solution. In particular, we show that some ring-chain tautomers not found using previously published algorithms are successfully located by ours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Antonov L (ed) (2016) Tautomerism: concepts and applications in science and technology. Wiley-VCH, Weinheim

    Google Scholar 

  2. Elguero J, Marzin C, Katritzky AR, Linda P (1976) The tautomerism of heterocycles. Academic Press, New York

    Google Scholar 

  3. Martin YC (2009) Let’s not forget tautomers. J Comput Aided Mol Des 23:693–704

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Dhaked DK, Guasch L, Nicklaus MC (2020) Tautomer database: a comprehensive resource for tautomerism analyses. J Chem Inf Modeling 60:1090–1100

    CAS  Google Scholar 

  5. Guasch L, Yapamudiyansel W, Peach ML, Kelley JA, Barchi JJ Jr, Nicklaus MC (2016) Experimental and chemoinformatics study of tautomerism in a database of commercially available screening samples. J Chem Inf Model 56:2149–2161

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Milletti F, Storchi L, Sforna G, Cross S, Cruciani G (2009) Tautomer enumeration and stability prediction for virtual screening on large chemical databases. J Chem Inf Model 49:68–75

    CAS  PubMed  Google Scholar 

  7. Warr WA (2010) Tautomerism in chemical information management systems. J Comput Aided Mol Des 24:497–520

    CAS  PubMed  Google Scholar 

  8. Greenwood JR, Calkins D, Sullivan AP, Shelley JC (2010) Towards the comprehensive, rapid, and accurate prediction of the favorable tautomeric states of drug-like molecules in aqueous solution. J Comput Aided Mol Des 24:591–604

    CAS  PubMed  Google Scholar 

  9. Katritzky AR, Hall CD, El-Gendy BEDM, Draghici B (2010) Tautomerism in drug discovery. J Comput Aided Mol Des 24:475–484

    CAS  PubMed  Google Scholar 

  10. Martin YC (2018) Experimental and pKa prediction aspects of tautomerism of drug-like molecules. Drug Discov Today 27:59–64

    Google Scholar 

  11. Pospisil P, Ballmer P, Scapozza L, Folkers G (2003) Tautomerism in computer-aided drug design. J Recept Signal Transduct 23:361–371

    CAS  Google Scholar 

  12. Abel R, Wang L, Harder ED, Berne BJ, Friesner RA (2017) Advancing drug discovery through enhanced free energy calculations. Acc Chem Res 50:1625–1632

    CAS  PubMed  Google Scholar 

  13. Wang L, Wu Y, Deng Y, Kim B, Pierce L, Krilov G, Lupyan D, Robinson S, Dahlgren MK, Greenwood J, Romero DL, Masse C, Knight JL, Steinbrecher T, Beuming T, Damm W, Harder E, Sherman W, Brewer M, Wester R, Murcko M, Frye L, Farid R, Lin T, Mobley DL, Jorgensen WL, Berne BJ, Friesner RA, Abel R (2015) Accurate and reliable prediction of relative ligand binding potency in prospective drug discovery by way of a modern free-energy calculation protocol and force field. J Am Chem Soc 137:2695–2703

    CAS  PubMed  Google Scholar 

  14. de Oliveira C, Yu HS, Chen W, Abel R, Wang L (2019) Rigorous free energy perturbation approach to estimating relative binding affinities between ligands with multiple protonation and tautomeric states. J Chem Theory Comput 15:424–435

    PubMed  Google Scholar 

  15. de Oliveira C, Yu HS, Chen W, Abel R, Wang L (2019) Correction to “rigorous free energy perturbation approach to estimating relative binding affinities between ligands with multiple protonation and tautomeric states”. J Chem Theory Comput 15:5758–5758

    PubMed  Google Scholar 

  16. Valters RE, Flitsch W (1985) Ring-Chain Tautomerism. Plenum Press, New York

    Google Scholar 

  17. Baldwin JE (1976) Rules for ring closure. J Chem Soc Chem Commun 18:734–736

    Google Scholar 

  18. James CA, Weininger D (2011) Daylight Theory Manual, Version 4.9. Daylight Chemical Information Systems Inc, Laguna Niguel, CA

    Google Scholar 

  19. Guasch L, Sitzmann M, Nicklaus MC (2014) Enumeration of ring-chain tautomers based on SMIRKS rules. J Chem Inf Model 54:2423–2432

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Dhaked DK, Ihlenfeldt WD, Patel H, Delannée V, Nicklaus MC (2020) Toward a comprehensive treatment of tautomerism in chemoinformatics including in InChI V2. J Chem Inf Model 60:1253–1275

    CAS  PubMed  Google Scholar 

  21. Watson MA, Yu HS, Bochevarov AD (2019) Generation of tautomers using micro-pKa’s. J Chem Inf Modeling 59:2672–2689

    CAS  Google Scholar 

  22. Yu HS, Watson MA, Bochevarov AD (2018) Weighted averaging scheme and local atomic descriptor for pKa prediction based on density functional theory. J Chem Inf Modeling 58:271–286

    CAS  Google Scholar 

  23. Cruz-Cabeza AJ, Schreyer A, Pitt WR (2010) Annular tautomerism: experimental observations and quantum mechanics calculations. J Comput Aided Mol Des 24:575–586

    CAS  PubMed  Google Scholar 

  24. Kochev NT, Paskaleva VH, Jeliazkova N (2013) Ambit-tautomer: an open source tool for tautomer generation. Mol Inf 32:481–504

    CAS  Google Scholar 

  25. Jensen JH, Swain CJ, Olsen L (2017) Prediction of pKa values for druglike molecules using semiempirical quantum chemical methods. J Phys Chem A 121:699–707

    CAS  PubMed  Google Scholar 

  26. Roszak R, Beker W, Molga K, Grzybowski BA (2019) Rapid and accurate prediction of pKa values of C-H acids using graph convolutional neural networks. J Am Chem Soc 141(43):17142–17149

    CAS  PubMed  Google Scholar 

  27. Li M, Zhang H, Chen B, Wu Y, Guan L (2018) Prediction of pKa values for neutral and basic drugs based on hybrid artificial intelligence methods. Sci Rep 8:3991

    PubMed  PubMed Central  Google Scholar 

  28. Zhou T, Jhamb S, Liang X, Sundmacher K, Gani R (2018) Prediction of acid dissociation constants of organic compounds using group contribution methods. Chem Eng Sci 183:95–105

    CAS  Google Scholar 

  29. Bochevarov AD, Harder E, Hughes TF, Greenwood JR, Braden DA, Philipp DM, Rinaldo D, Halls MD, Zhang Z, Friesner RA (2013) Jaguar: a high-performance quantum chemistry software program with strengths in life and materials sciences. Int J Quant Chem 113:2110–2142

    CAS  Google Scholar 

  30. Schrödinger (2020) Release 2020-3: ConfGen, Schrödinger, LLC, New York, NY

  31. Stewart JJP (2013) Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters. J Mol Model 19:1–32

    CAS  PubMed  Google Scholar 

  32. Miles WH (2014) Synthetic applications of \(\gamma\)-hydroxybutenolides. Curr Org Synth 11:244–267

    CAS  Google Scholar 

  33. Roca-López D, Darù A, Tejero T, Merino P (2016) Revisiting oxime-nitrone tautomerism. Evidence of nitrone tautomer participation in oxime nucleophilic addition reactions. RSC Adv 6:22161–22173

    Google Scholar 

  34. Banks JL, Beard HS, Cao Y, Cho AE, Damm W, Farid R, Felts AK, Halgren TA, Mainz DT, Maple JR, Murphy R, Philipp DM, Repasky MP, Zhang LY, Berne BJ, Friesner RA, Gallicchio E, Levy RM (2005) Integrated modeling program, applied chemical theory (IMPACT). J Comput Chem 26:1752–1780

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Roos K, Wu C, Damm W, Reboul M, Stevenson JM, Lu C, Dahlgren MK, Mondal S, Chen W, Wang L, Abel R, Friesner RA, Harder ED (2019) OPLS3e: extending force field coverage for drug-like small molecules. J Chem Theory Comput 15:1863–1874

    CAS  PubMed  Google Scholar 

  36. Cortis CM, Friesner RA (1997) An automatic three-dimensional finite element mesh generation system for the Poisson-Boltzmann equation. J Comput Chem 18:1570–1590

    CAS  Google Scholar 

  37. Cortis CM, Friesner RA (1997) Numerical solution of the Poisson-Boltzmann equation using tetrahedral finite-element meshes. J Comput Chem 18:1591–1608

    CAS  Google Scholar 

  38. Marten B, Kim K, Cortis C, Friesner RA, Murphy RB, Ringnalda MN, Sitkoff D, Honig B (1996) New model for calculation of solvation free energies: correction of self-consistent reaction field continuum dielectric theory for short-range hydrogen-bonding effects. J Phys Chem 100:11775–11788

    CAS  Google Scholar 

  39. Malde AK, Stroet M, Caron B, Visscher KM, Mark AE (2018) Predicting the prevalence of alternative warfarin tautomers in solution. J Chem Theory Comput 14:4405–4415

    CAS  PubMed  Google Scholar 

  40. Parchment OG, Green DVS, Taylor PJ, Hillier IH (1993) The prediction of tautomer equilibria in hydrated 3-hydroxypyrazole: a challenge to theory. J Am Chem Soc 115:2352–2356

    CAS  Google Scholar 

  41. Chen J, Shao Y, Ho J (2019) Are explicit solvent models more accurate than implicit solvent models? A case study on the Menschutkin reaction. J Phys Chem A 123:5580–5589

    CAS  PubMed  Google Scholar 

  42. Wahl O, Sander T (2020) Tautobase: an open tautomer database. J Chem Inf Modeling 60:1085–1089

    CAS  Google Scholar 

  43. Guasch L, Peach ML, Nicklaus MC (2015) Tautomerism of warfarin: combined chemoinformatics, quantum chemical, and NMR investigation. J Org Chem 80:9900–9909

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Porter WR (2010) Warfarin: history, tautomerism and activity. J Comput Aided Mol Des 24:553–573

    CAS  PubMed  Google Scholar 

  45. Remko M, Broer R, Remková A (2014) A comparative study of the molecular structure, lipophilicity, solubility, acidity, absorption and polar surface area of coumarinic anticoagulants and direct thrombin inhibitors. RSC Adv 4:8072–8084

    CAS  Google Scholar 

  46. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215–241

    CAS  Google Scholar 

  47. Grimme S, Anthony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104

    PubMed  Google Scholar 

  48. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32:1456–1465

    CAS  PubMed  Google Scholar 

  49. Zhao Y, Truhlar DG (2005) Design of density functionals that are broadly accurate for thermochemistry, thermochemical kinetics, and nonbonded interactions. J Phys Chem A 109:5656–5667

    CAS  PubMed  Google Scholar 

  50. Goerigk L, Hansen A, Bauer C, Ehrlich S, Najibi A, Grimme S (2017) A look at the density functional theory zoo with the advanced GMTKN55 database for general main group thermochemistry, kinetics and noncovalent interactions. Phys Chem Chem Phys 19:32184–32215

    CAS  PubMed  Google Scholar 

  51. Mardirossian N, Head-Gordon M (2017) Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals. Mol Phys 115:2315–2372

    CAS  Google Scholar 

  52. Verma P, Truhlar DG (2020) Status and challenges of density functional theory. Trends Chem 2:302–318

    CAS  Google Scholar 

  53. Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem 24:669–681

    CAS  PubMed  Google Scholar 

  54. Bondi A (1964) van der Waals volumes and radii. J Phys Chem 68:441–451

    CAS  Google Scholar 

  55. Sayle RA (2010) So you think you understand tautomerism? J Comput Aided Mol Des 24:485–496

    CAS  PubMed  Google Scholar 

  56. Mchedlov-Petrossyan NO, Cheipesh TA, Shekhovtsov SV, Redko AN, Rybachenko VI, Omelchenko IV, Shishkin OV (2015) Ionization and tautomerism of methyl fluorescein and related dyes. Spectrochim Acta Part A 150:151–161

    CAS  Google Scholar 

  57. Mchedlov-Petrossyan NO, Cheipesh TA, Shekhovtsov SV, Ushakova EV, Roshal AD, Omelchenko IV (2019) Aminofluoresceins versus fluorescein: ascertained new unusual features of tautomerism and dissociation of hydroxyxanthene dyes in solution. J Phys Chem A 123:8845–8859

    CAS  PubMed  Google Scholar 

  58. Rozwarski DA, Grant GA, Barton DHR, Jacobs WR Jr, Sacchettini JC (1998) Modification of the NADH of the Isoniazid Target (InhA) from Mycobacterium tuberculosis. Science 279:98–102

    CAS  PubMed  Google Scholar 

  59. Delaine T, Bernardes-Génisson V, Stigliani JL, Gornitzka H, Meunier B, Bernadou J (2007) Ring-chain tautomerism of simplified analogues of isoniazid-NAD(P) adducts: an experimental and theoretical study. Eur J Org Chem 2007:1624–1630

    Google Scholar 

  60. Stigliani JL, Arnaud P, Delaine T, Bernardes-Génisson V, Meunier B, Bernadou J (2008) Binding of the tautomeric forms of isoniazid-NAD adducts to the active site of the Mycobacterium tuberculosis enoyl-ACP reductase (InhA): a theoretical approach. J Mol Graph Modelling 27:536–545

    CAS  Google Scholar 

  61. Linciano P, Moraes CB, Alcantara LM, Franco CH, Pascoalino B, Freitas-Junior LH, Macedo S, Santarem N, Cordeiro-da Silva A, Gul S, Witt G, Kuzikov M, Ellinger B, Ferrari S, Luciani R, Quotadamo A, Costantino L, Costi MP (2018) Aryl thiosemicarbazones for the treatment of trypanosomatidic infections. Eur J Med Chem 146:423–434

    CAS  PubMed  Google Scholar 

  62. Leblois D, Piessard S, Le Baut G, Kumar P, Brion JD, Sparfel L, Sanchez RY, Juge M, Petit JY, Welin L (1987) Pyrophtalones VII. Synthèse et activité anti-inflammatoire de (pyridinyl-4)-2 indanediones-1,3 substituées sur le noyau benzénique et/ou sur l'hétérocycle. Eur J Med Chem 22:229–238

    CAS  Google Scholar 

  63. Sigalov MV (2014) Ring-chain tautomerism with participation of pyridine nitrogen: the intramolecular cyclization of 2-pyridinecarboxaldehyde-indandione adducts in acidic medium. J Mol Struct 1074:302–309

    CAS  Google Scholar 

  64. Wang J, Sánchez-Roselló M, Aceña J, del Pozo C, Sorochinsky A, Fustero S, Soloshonok V, Liu H (2014) Fluorine in pharmaceutical industry: fluorine-containing drugs introduced to the market in the last decade (2001–2011). Chem Rev 114:2432–2506

    CAS  PubMed  Google Scholar 

  65. Bochevarov AD, Watson MA, Greenwood JR, Philipp DM (2016) Multiconformation, density functional theory-based pKa prediction in application to large, flexible organic molecules with diverse functional groups. J Chem Theory Comput 12:6001–6019

    CAS  PubMed  Google Scholar 

  66. Brown TN, Mora-Diez N (2006) Computational determination of aqueous pKa values of protonated benzimidazoles (part 1). J Phys Chem B 110:9270–9279

    CAS  PubMed  Google Scholar 

  67. Farràs P, Teixidor F, Branchadell V (2006) Prediction of pKa values of nido-carboranes by density functional theory methods. Inorg Chem 45:7947–7954

    PubMed  Google Scholar 

  68. Klicić JJ, Friesner RA, Liu SY, Guida WC (2002) Accurate prediction of acidity constants in aqueous solution via density functional theory and self-consistent reaction field methods. J Phys Chem A 106:1327–1335

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Art D. Bochevarov.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (TXT 1 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levine, D.S., Watson, M.A., Jacobson, L.D. et al. Pattern-free generation and quantum mechanical scoring of ring-chain tautomers. J Comput Aided Mol Des 35, 417–431 (2021). https://doi.org/10.1007/s10822-020-00334-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-020-00334-w

Keywords

Navigation