Skip to main content

Advertisement

Log in

Interactions of GF-17 derived from LL-37 antimicrobial peptide with bacterial membranes: a molecular dynamics simulation study

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Human cathelicidin LL-37 has recently attracted interest as a potential therapeutic agent, mostly because of its ability to kill a wide variety of pathogens and cancer cells. In this study, we used molecular dynamics simulation aimed to get insights that help to correlate with the antibacterial activity of previously designed LL-37 anticancer derivative (i.e. GF-17). Two independent molecular dynamics simulation involving four units of GF-17 peptide in the mixture (9:1) of 1,2-dipalmitoyl-sn-glycero-3-phosphorylethanolamine (DPPE) and 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPG), and the pure DPPG lipids were performed. Various properties of membranes such as mass density distributions, area per lipid, bilayer thickness, and lateral diffusion were examined in both systems. The results showed that the thickness of the bilayer was not affected by the presence of GF-17, while the area per lipid and lateral diffusion of lipids showed an increase. Moreover, the potential of the mean force (PMF) method was used to calculate the free energy profile for transferring GF-17 from the bulk water into both kinds of membranes. It revealed that penetration of GF-17 into the DPPG membrane was more favorable than the DPPE/DPPG membrane, and there was no energy barrier for crossing through the bilayer center. Investigation of the radius of gyration (Rg) and root mean square fluctuation (RMSF) of peptides in two membranes showed that GF-17 had more compactness and rigidity in the pure DPPG system. By examining the secondary structure of GF-17 peptide, it was seen that the α-helix, and coil structures in both DPPE/DPPG and pure DPPG membranes are dominant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Guilhelmelli F, Vilela N, Albuquerque P, Derengowski L, Silva-Pereira I, Kyaw C (2013) Antibiotic development challenges: the various mechanisms of action of antimicrobial peptides and of bacterial resistance. Front Microbiol 4:353

    Google Scholar 

  2. Hale JDF, Hancock REW (2007) Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev Anti Infect Ther 5:951–959

    CAS  Google Scholar 

  3. Memariani H, Shahbazzadeh D, Sabatier J-M, Memariani M, Karbalaeimahdi A, Bagheri KP (2016) Mechanism of action and in vitro activity of short hybrid antimicrobial peptide PV3 against Pseudomonas aeruginosa. Biochem Biophys Res Commun 479:103–108

    CAS  Google Scholar 

  4. Pachón-Ibáñez ME, Smani Y, Pachón J (2017) Perspectives for clinical use of engineered human host defense antimicrobial peptides. FEMS Microbiol Rev 41:323–342

    Google Scholar 

  5. Memariani H, Shahbazzadeh D, Sabatier J, Pooshang K, Bagheri (2018) Membrane-active peptide PV 3 efficiently eradicates multidrug‐resistant Pseudomonas aeruginosa in a mouse model of burn infection. Apmis 126:114–122

    CAS  Google Scholar 

  6. Akbari R, Vala MH, Hashemi A, Aghazadeh H, Sabatier J-M, Bagheri KP (2018) Action mechanism of melittin-derived antimicrobial peptides, MDP1 and MDP2, de novo designed against multidrug resistant bacteria. Amino Acids 50:1231–1243

    CAS  Google Scholar 

  7. Memariani H, Shahbazzadeh D, Ranjbar R, Behdani M, Memariani M et al (2017) Design and characterization of short hybrid antimicrobial peptides from pEM-2, mastoparan‐VT 1, and mastoparan‐B. Chem Biol Drug Des 89:327–338

    CAS  Google Scholar 

  8. Pashaei F, Bevalian P, Akbari R, Bagheri KP (2019) Single dose eradication of extensively drug resistant Acinetobacter spp. In a mouse model of burn infection by melittin antimicrobial peptide. Microb Pathog 127:60–69

    CAS  Google Scholar 

  9. Aghazadeh H, Memariani H, Ranjbar R, Pooshang K, Bagheri (2019) The activity and action mechanism of novel short selective LL-37‐derived anticancer peptides against clinical isolates of Escherichia coli. Chem Biol Drug Des 93:75–83

    CAS  Google Scholar 

  10. Lohner K (2009) New strategies for novel antibiotics: peptides targeting bacterial cell. Gen Physiol Biophys 28:105–116

    CAS  Google Scholar 

  11. Gaspar D, Veiga AS, Castanho MARB (2013) From antimicrobial to anticancer peptides. A review. Front Microbiol 4:294

    Google Scholar 

  12. Mahmoodzadeh A, Zarrinnahad H, Bagheri KP, Moradia A, Shahbazzadeh D (2015) First report on the isolation of melittin from Iranian honey bee venom and evaluation of its toxicity on gastric cancer AGS cells. J Chin Med Assoc 78:574–583

    Google Scholar 

  13. Zarrinnahad H, Mahmoodzadeh A, Hamidi MP, Mahdavi M, Moradi A, Bagheri KP, Shahbazzadeh D (2018) Apoptotic effect of melittin purified from Iranian honey bee venom on human cervical cancer HeLa cell line. Int J Pept Res Ther 24:563–570

    CAS  Google Scholar 

  14. Harris F, Dennison SR, Singh J, Phoenix DA (2013) On the selectivity and efficacy of defense peptides with respect to cancer cells. Med Res Rev 33:190–234

    CAS  Google Scholar 

  15. Wang L, Dong C, Li X, Han W, Su X (2017) Anticancer potential of bioactive peptides from animal sources. Oncol Rep 38:637–651

    CAS  Google Scholar 

  16. Hoskin DW, Ramamoorthy A (2008) Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta 1778:357–375

    CAS  Google Scholar 

  17. van Zoggel H, Carpentier G, Dos Santos C, Hamma-Kourbali Y, Courty J, Amiche M, Delbé J (2012) Antitumor and angiostatic activities of the antimicrobial peptide dermaseptin B2. PLoS ONE 7:e44351

    Google Scholar 

  18. Sørensen OE, Follin P, Johnsen AH, Calafat J, Tjabringa GS, Hiemstra PS, Borregaard N (2001) Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3. Blood 97:3951–3959

    Google Scholar 

  19. Morizane S, Gallo RL (2012) Antimicrobial peptides in the pathogenesis of psoriasis. J Dermatol 39:225–230

    CAS  Google Scholar 

  20. Bandurska K, Berdowska A, Barczyńska-Felusiak R, Krupa P (2015) Unique features of human cathelicidin LL‐37. Biofactors 41:289–300

    CAS  Google Scholar 

  21. Tsai P-W, Cheng Y-L, Hsieh W-P, Lan C-Y (2014) Responses of Candida albicans to the human antimicrobial peptide LL-37. J Microbiol 52:581–589

    CAS  Google Scholar 

  22. Vandamme D, Landuyt B, Luyten W, Schoofs L (2012) A comprehensive summary of LL-37, the factotum human cathelicidin peptide. Cell Immunol 280:22–35

    CAS  Google Scholar 

  23. Jacob B, Park I, Bang J, Shin SY (2013) Short KR-12 analogs designed from human cathelicidin LL‐37 possessing both antimicrobial and antiendotoxic activities without mammalian cell toxicity. J Pept Sci 19:700–707

    CAS  Google Scholar 

  24. Kamysz E, Sikorska E, Jaśkiewicz M, Bauer M, Neubauer D, Bartoszewska S, Barańska-Rybak W, Kamysz W (2020) Lipidated analogs of the LL-37-derived peptide fragment KR12—structural analysis, surface-active properties and antimicrobial activity. Int J Mol Sci 21:887

    CAS  Google Scholar 

  25. Wang G, Watson KM, Buckheit RW (2008) Anti-human immunodeficiency virus type 1 activities of antimicrobial peptides derived from human and bovine cathelicidins. Antimicrob Agents Chemother 52:3438–3440

    CAS  Google Scholar 

  26. Noore J, Noore A, Li B (2013) Cationic antimicrobial peptide LL-37 is effective against both extra-and intracellular Staphylococcus aureus. Antimicrob Agents Chemother 57:1283–1290

    CAS  Google Scholar 

  27. Wang G, Mishra B, Epand RF, Epand RM (2014) High-quality 3D structures shine light on antibacterial, anti-biofilm and antiviral activities of human cathelicidin LL-37 and its fragments. Biochim Biophys Acta 1838:2160–2172

    CAS  Google Scholar 

  28. Wang X, Junior JCB, Mishra B, Lushnikova T, Epand RM, Wang G (2017) Arginine-lysine positional swap of the LL-37 peptides reveals evolutional advantages of the native sequence and leads to bacterial probe. Biochim Biophys Acta 1859:1350–1361

    CAS  Google Scholar 

  29. Mishra B, Golla RM, Lau K, Lushnikova T, Wang G (2015) Anti-staphylococcal biofilm effects of human cathelicidin peptides. ACS Med Chem Lett 7:117–121

    Google Scholar 

  30. Li X, Li Y, Han H, Miller DW, Wang G (2006) Solution structures of human LL-37 fragments and NMR-based identification of a minimal membrane-targeting antimicrobial and anticancer region. J Am Chem Soc 128:5776–5785

    CAS  Google Scholar 

  31. Orsi M, Essex JW (2010) Permeability of drugs and hormones through a lipid bilayer: insights from dual-resolution molecular dynamics. Soft Matter 6:3797–3808

    CAS  Google Scholar 

  32. Zhao L, Cao Z, Bian Y, Hu G, Wang J, Zhou Y (2018) Molecular dynamics simulations of human antimicrobial peptide LL-37 in model POPC and POPG lipid bilayers. Int J Mol Sci 19:1186

    Google Scholar 

  33. Mojumdar EH, Lyubartsev AP (2010) Molecular dynamics simulations of local anesthetic articaine in a lipid bilayer. Biophys Chem 153:27–35

    CAS  Google Scholar 

  34. Ganjali Koli M, Azizi K (2017) The partition and transport behavior of cytotoxic ionic liquids (ILs) through the DPPC bilayer: insights from molecular dynamics simulation. Mol Membr Biol 33:64–75. https://doi.org/10.1080/09687688.2017.1384859

    Article  CAS  Google Scholar 

  35. Högberg C-J, Lyubartsev AP (2008) Effect of local anesthetic lidocaine on electrostatic properties of a lipid bilayer. Biophys J 94:525–531

    Google Scholar 

  36. Azizi K, Ganjali Koli M (2016) Molecular dynamics simulations of oxprenolol and propranolol in a DPPC lipid bilayer. J Mol Graph Model 64:153–164

    CAS  Google Scholar 

  37. Jahangiri S, Jafari M, Arjomand M, Mehrnejad F (2018) Molecular insights into the interactions of GF-17 with the gram‐negative and gram‐positive bacterial lipid bilayers. J Cell Biochem 119:9205–9216

    CAS  Google Scholar 

  38. Wang X, Mishra B, Lushnikova T, Narayana JL, Wang G (2018) Amino acid composition determines peptide activity spectrum and hot-spot‐based design of merecidin. Adv Biosyst 2:1700259

    Google Scholar 

  39. Rowlett VW, Mallampalli VKPS, Karlstaedt A, Dowhan W, Taegtmeyer H, Margolin W, Vitrac H (2017) The impact of membrane phospholipid alterations in Escherichia coli on cellular function and bacterial stress adaptation. J Bacteriol 199(13):e00849-16

    CAS  Google Scholar 

  40. Sohlenkamp C, Geiger O (2016) Bacterial membrane lipids: diversity in structures and pathways. FEMS Microbiol Rev 40:133–159

    CAS  Google Scholar 

  41. Malanovic N, Lohner K (2016) Gram-positive bacterial cell envelopes: the impact on the activity of antimicrobial peptides. Biochim Biophys Acta  1858:936–946

    CAS  Google Scholar 

  42. Jo S, Lim JB, Klauda JB, Im W (2009) CHARMM-GUI membrane builder for mixed bilayers and its application to yeast membranes. Biophys J 97:50–58

    CAS  Google Scholar 

  43. Lee J, Cheng X, Swails JM, Yeom MS, Eastman PK, Lemkul JA, Wei S, Buckner J, Jeong JC, Qi Y (2015) CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J Chem Theory Comput 12:405–413

    Google Scholar 

  44. Wu EL, Cheng X, Jo S, Rui H, Song KC, Dávila-Contreras EM, Qi Y, Lee J, Monje‐Galvan V, Venable RM (2014) CHARMM‐GUI membrane builder toward realistic biological membrane simulations. J Comput Chem 35:1997–2004

    CAS  Google Scholar 

  45. Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43–56

    CAS  Google Scholar 

  46. Pall S, Abraham MJ, Kutzner C, Hess B, Lindahl E (2014) Tackling exascale software challenges in molecular dynamics simulations with GROMACS. International conference exascale applied software. Springer, Berlin, pp 3–27

    Google Scholar 

  47. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1:19–25

    Google Scholar 

  48. Venable RM, Sodt AJ, Rogaski B, Rui H, Hatcher E, MacKerell AD Jr, Pastor RW, Klauda JB (2014) CHARMM all-atom additive force field for sphingomyelin: elucidation of hydrogen bonding and of positive curvature. Biophys J 107:134–145

    CAS  Google Scholar 

  49. Klauda JB, Venable RM, Freites JA, O’Connor JW, Tobias DJ, Mondragon-Ramirez C, Vorobyov I, MacKerell AD, Jr RW, Pastor (2010) Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B 114:7830–7843

    CAS  Google Scholar 

  50. Boggara MB, Krishnamoorti R (2010) Partitioning of nonsteroidal antiinflammatory drugs in lipid membranes: a molecular dynamics simulation study. Biophys J 98:586–595

    CAS  Google Scholar 

  51. Parrinello M, Rahman A (1980) Crystal structure and pair potentials: a molecular-dynamics study. Phys Rev Lett 45:1196

    CAS  Google Scholar 

  52. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    CAS  Google Scholar 

  53. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

    CAS  Google Scholar 

  54. Hockney RW, Goel SP, Eastwood JW (1974) Quiet high-resolution computer models of a plasma. J Comput Phys 14:148–158

    Google Scholar 

  55. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593

    CAS  Google Scholar 

  56. Snyman J (2005) Practical mathematical optimization: an introduction to basic optimization theory and classical and new gradient-based algorithms. Springer, Berlin

    Google Scholar 

  57. Torrie GM, Valleau JP (1977) Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J Comput Phys 23:187–199

    Google Scholar 

  58. Koli MG, Azizi K (2019) Investigation of benzodiazepines (BZDs) in a DPPC lipid bilayer: insights from molecular dynamics simulation and DFT calculations. J Mol Graph Model 90:171–179

    Google Scholar 

  59. Hub JS, De Groot BL, Van Der Spoel D (2010) A free weighted histogram analysis implementation including robust error and autocorrelation estimates. J Chem Theory Comput 6:3713–3720

    CAS  Google Scholar 

  60. Vivcharuk V, Kaznessis YN (2011) Thermodynamic analysis of protegrin-1 insertion and permeation through a lipid bilayer. J Phys Chem B 115:14704–14712

    CAS  Google Scholar 

  61. Epand RM, Vogel HJ (1999) Diversity of antimicrobial peptides and their mechanisms of action. Biochim Biophys Acta 1462:11–28

    CAS  Google Scholar 

  62. Matyus E, Kandt C, Tieleman DP (2007) Computer simulation of antimicrobial peptides. Curr Med Chem 14:2789–2798

    CAS  Google Scholar 

  63. Zhao W, Róg T, Gurtovenko AA, Vattulainen I, Karttunen M (2008) Role of phosphatidylglycerols in the stability of bacterial membranes. Biochimie 90:930–938

    CAS  Google Scholar 

  64. Bechinger B (2004) Structure and function of membrane-lytic peptides. CRC Crit Rev Plant Sci 23:271–292

    CAS  Google Scholar 

  65. Sato H, Feix JB (2006) Peptide–membrane interactions and mechanisms of membrane destruction by amphipathic α-helical antimicrobial peptides. Biochim Biophys Acta 1758:1245–1256

    CAS  Google Scholar 

  66. Wimley WC (2010) Describing the mechanism of antimicrobial peptide action with the interfacial activity model. ACS Chem Biol 5:905–917

    CAS  Google Scholar 

  67. Kolusheva S, Shahal T, Jelinek R (2000) Peptide–membrane interactions studied by a new phospholipid/polydiacetylene colorimetric vesicle assay. Biochemistry 39:15851–15859

    CAS  Google Scholar 

  68. Leontiadou H, Mark AE, Marrink SJ (2006) Antimicrobial peptides in action. J Am Chem Soc 128:12156–12161

    CAS  Google Scholar 

  69. Pan J, Heberle FA, Tristram-Nagle S, Szymanski M, Koepfinger M, Katsaras J, Kučerka N (1818) Molecular structures of fluid phase phosphatidylglycerol bilayers as determined by small angle neutron and X-ray scattering. Biochim Biophys Acta 2012:2135–2148

    Google Scholar 

  70. Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolym Orig Res Biomol 22:2577–2637

    CAS  Google Scholar 

  71. Malkov S, Zivkovic MV, Beljanski MV, Zaric SD (2005) Correlations of amino acids with secondary structure types: connection with amino acid structure, ArXiv Prepr. q-Bio/0505046

Download references

Acknowledgement

The authors gratefully thank the use of School of Computer Science, Institute for Research in Fundamental Science (IPM) as the computations were done there.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mokhtar Ganjali Koli.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 374 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghazadeh, H., Ganjali Koli, M., Ranjbar, R. et al. Interactions of GF-17 derived from LL-37 antimicrobial peptide with bacterial membranes: a molecular dynamics simulation study. J Comput Aided Mol Des 34, 1261–1273 (2020). https://doi.org/10.1007/s10822-020-00348-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-020-00348-4

Keywords

Navigation