Skip to main content

Advertisement

Log in

Predicting PAMPA permeability using the 3D-RISM-KH theory: are we there yet?

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The parallel artificial membrane permeability assay (PAMPA), a non-cellular lab-based assay, is extensively used to measure the permeability of pharmaceutical compounds. PAMPA experiments provide a working mimic of a molecule passing through cells and PAMPA values are widely used to estimate drug absorption parameters. There is an increased interest in developing computational methods to predict PAMPA permeability values. We developed an in silico model to predict the permeability of compounds based on the PAMPA assay. We used the three-dimensional reference interaction site model (3D-RISM) theory with the Kovalenko–Hirata (KH) closure to calculate the excess chemical potentials of a large set of compounds and predicted their apparent permeability with good accuracy (mean absolute error or MAE = 0.69 units) when compared to a published experimental data set. Furthermore, our in silico PAMPA protocol performed very well in the binary prediction of 288 compounds as being permeable or impermeable (precision = 94%, accuracy = 93%). This suggests that our in silico protocol can mimic the PAMPA assay and could aid in the rapid discovery or screening of potentially therapeutic drug leads that can be delivered to a desired tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kansy M, Senner F, Gubernator L (1998) J Med Chem 41:1007–1010

    Article  CAS  PubMed  Google Scholar 

  2. Kansy M, Fischer H, Kratzat K, Senner F, Wagner B, Parrilla I (2001) In: Testa B, van de Waterbeemd H, Folkers G, Guy R (eds) Pharmacokinetic optimization in drug research: biological, physicochemical, and computational strategies. Verlag Helvetica Chimica Acta, Zürich/Wiley-VCG, Weinheim

  3. Di L, Kerns EH (2003) Curr Opin Chem Biol 7:402–408

    Article  CAS  PubMed  Google Scholar 

  4. Veber DF, Johnson SR, Cheng H-Y, Smith BR, Ward KW, Kopple KD (2002) J Med Chem 45:2615–2623

    Article  CAS  PubMed  Google Scholar 

  5. Kerns EH (2001) J Pharm Sci 90:1838–1858

    Article  CAS  PubMed  Google Scholar 

  6. Avdeef A, Bendels S, Di L, Faller B, Kansy M, Sugano K, Yamauchi Y (2007) J Pharm Sci 96:2893–2909

    Article  CAS  PubMed  Google Scholar 

  7. Bermejo M, Avdeef A, Ruiz A, Nalda R, Ruell JA, Tsinman O, González I, Fernández C, Sánchez G, Garrigues TM, Merino V (2004) Eur J Pharm Sci 21:429–441

    Article  CAS  PubMed  Google Scholar 

  8. Avdeef A, Artursson P, Neuhoff S, Lazorova L, Gråsjӧ J, Tavelin S (2005) Eur J Pharm Sci 24:333–349

    Article  CAS  PubMed  Google Scholar 

  9. Wohnsland F, Faller B (2001) J Med Chem 44:923–930

    Article  CAS  PubMed  Google Scholar 

  10. Sugano K, Hamada H, Machida M, Ushio H (2001) J Biomol Screen 6:189–196

    Article  CAS  PubMed  Google Scholar 

  11. Fujikawa M, Ano R, Nakao K, Shimizu R, Akamatsu M (2005) Bioorg Med Chem 13:4721–4732

    Article  CAS  PubMed  Google Scholar 

  12. Fujikawa M, Nakao K, Shimizu R, Akamatsu M (2007) Bioorg Med Chem 15:3756–3767

    Article  CAS  PubMed  Google Scholar 

  13. Verma RP, Hansch C, Selassie CD (2007) J Comput Aided Mol Des 21:3–22

    Article  CAS  PubMed  Google Scholar 

  14. Sun H, Nguyen K, Kerns E, Yan Z, Yu KR, Shah P, Jadhav A, Xu X (2017) Bioorg Med Chem 25:1266–1276

    Article  CAS  PubMed  Google Scholar 

  15. Oja M, Maran U (2015) Mol Inform 34:493–506

    Article  CAS  PubMed  Google Scholar 

  16. Oja M, Maran U (2016) SAR QSAR Environ Res 27:813–832

    Article  CAS  PubMed  Google Scholar 

  17. Oja M, Maran U (2018) Eur J Pharm Sci 123:429–440

    Article  CAS  PubMed  Google Scholar 

  18. Avdeef A, Tsinman O (2006) Eur J Pharm Sci 28:43–50

    Article  CAS  PubMed  Google Scholar 

  19. Diukendjieva A, Alov A, Tsakovska I, Pencheva T, Richarz A, Kren V, Cronin MTD, Pajeva I (2019) Phytomedicine 53:79–85

    Article  CAS  PubMed  Google Scholar 

  20. Karleson M, Karleson G, Tamm T, Tulp I, Jänes J, Tämm K, Lomaka A, Savchenko D, Dobchev A (2009) ARKIVOC Online J Org Chem 2009:218–238

    Google Scholar 

  21. Hansen N, van Gunsteren WF (2014) J Chem Theory Comput 10:2632–2647

    Article  CAS  PubMed  Google Scholar 

  22. Skyner RE, McDonagh JL, Groom CR, van Mourik T, Mitchell JBO (2015) Phys Chem Chem Phys 17:6174–6191

    Article  CAS  PubMed  Google Scholar 

  23. Chandler D, McCoy JD, Singer SJ (1986) J Chem Phys 85:5971–5976

    Article  CAS  Google Scholar 

  24. Chandler D, McCoy JD, Singer SJ (1986) J Chem Phys 85:5977–5982

    Article  CAS  Google Scholar 

  25. Lowden LJ, Chandler D (1973) J Chem Phys 59:6587–6595

    Article  CAS  Google Scholar 

  26. Kovalenko A (2015) Condens Matter Phys 18:32601

    Article  CAS  Google Scholar 

  27. Palmer DS, Frolov A, Ratkova EL, Fedorov MV (2010) J Phys Condens Matter 22:492101

    Article  PubMed  CAS  Google Scholar 

  28. Kovalenko A, Hirata F (2005) Phys Chem Chem Phys 7:1785–1793

    Article  CAS  PubMed  Google Scholar 

  29. Kovalenko A (2013) Pure Appl Chem 85:159–199

    Article  CAS  Google Scholar 

  30. Kovalenko A (2017) Multiscale modeling of solvation. In: Breitkopf C, Swider-Lyons K (eds) Springer handbook of electrochemical energy. Springer, Berlin

    Google Scholar 

  31. Kovalenko A, Gusarov S (2017) Phys Chem Chem Phys 20:2947–2969

    Article  Google Scholar 

  32. Ratkova EL, Palmer DS, Fedorov MV (2015) Chem Rev 13:6312–6356

    Article  CAS  Google Scholar 

  33. Roy D, Kovalenko A (2019) J Phys Chem A 123:4087–4093

    Article  CAS  PubMed  Google Scholar 

  34. Roy D, Blinov N, Kovalenko A (2017) J Phys Chem B 121:9268–9273

    Article  CAS  PubMed  Google Scholar 

  35. Roy D, Hinge VK, Kovalenko A (2019) ACS Omega 4:3055–3060

    Article  CAS  Google Scholar 

  36. Roy D, Hinge VK, Kovalenko A (2019) ACS Omega 4:16774–16780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Roy D, Kovalenko A (2019) J Comput Aided Mol Des 33:905–912

    Article  CAS  PubMed  Google Scholar 

  38. Roy D, Kovalenko A (2020) J Phys Chem B 124:4590–4597

    Article  CAS  PubMed  Google Scholar 

  39. Truchon J-F, Pettit BM, Labute P (2014) J Chem Theory Comput 10:934–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Misin M, Palmer DS, Fedorov MV (2016) J Phys Chem B 2016(120):5724–5731

    Article  CAS  Google Scholar 

  41. Avdeef A (2002) In: van de Waterbeemd H, Lennernas H, Artursson P (eds) Drug bioavailability. Weinheim, Wiley-VCH

  42. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) J Cheminform 3:33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  44. Easton RE, Geisen DJ, Welch A, Cramer CJ, Truhlar DG (1996) Theor Chem Acc 93:281–301

    Article  CAS  Google Scholar 

  45. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr., Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16, Revision B.01. Gaussian, Inc., Wallingford CT

  46. Case DA, Ben-Shalom IY, Brozell SR, Cerutti DS, Cheatham TE III, Cruzeiro VWD, Darden TA, Duke RE, Ghoreishi D, Gilson MK, Gohlke H, Goetz AW, Greene D, Harris R, Homeyer N, Izadi S, Kovalenko A, Kurtzman T, Lee TS, LeGrand S, Li P, Lin C, Liu J, Luchko T, Luo R, Mermelstein DJ, Merz KM, Miao Y, Monard G, Nguyen C, Nguyen H, Omelyan I, Onufriev A, Pan F, Qi R, Roe DR, Roitberg A, Sagui C, Schott-Verdugo S, Shen J, Simmerling CL, Smith J, Salomon-Ferrer R, Swails J, Walker RC, Wang J, Wei H, Wolf RM, Wu X, Xiao L, York DM, Kollman PA (2018) AMBER 2018. University of California, San Francisco

    Google Scholar 

  47. Rappe AK, Casewit CJ, Colwell KS, Goddard WA, Skiff WM (1992) J Am Chem Soc 114:10024–10035

    Article  CAS  Google Scholar 

  48. Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) J Am Chem Soc 107:3902–3909

    Article  CAS  Google Scholar 

  49. MOPAC2016, Stewart JJP, Stewart Computational Chemistry, Colorado Springs, CO, USA

  50. Yap CW (2011) J Comput Chem 32:1466–1476

    Article  CAS  PubMed  Google Scholar 

  51. Marvin 17.21.0, ChemAxon (https://www.chemaxon.com)

  52. R Core Team (2017) R: A Language And Environment For Statistical Computing; R Foundation for Statistical Computing, Vienna, Austria

  53. Robinson D, Gomez M, Demeshev B, Menne D, Nutter B, Johnston L, Bolker B, Briatte F, Arnold J, Gabry J (2017) Broom: Convert Statistical Analysis Objects into Tidy Data Frames

  54. Wickham H (2007) ggplot2: elegant graphics for data analysis. Springer-Verlag, New York

    Google Scholar 

  55. Kuhn M (2008) Building predictive models in R using the caret package. J Stat Softw 1(5):2008

    Google Scholar 

  56. Ridgeway G (2007) Generalized boosted models: a guide to the gbm package. R package vignette, http://CRAN.R-project.org/package=gbm. Accessed 12 May 2020

  57. Liaw R, Wiener M (2002) Classification and regression by randomForest. R News 2:18–22

    Google Scholar 

  58. Dimitriadou E, Hornik K, Leisch F, Meyer D, Weingessel A (2008) e1071: Misc Functions of the Department of Statistics (e1071), TU Wien. R package version 1.5-18. https://cran.r-project.org/web/packages/e1071/index.html. Accessed 12 May 2020

  59. Schliep K, Hechenbichler K (2016) Weighted k-nearest neighbors for classification, regression and clustering. R package version 1.3. https://cran.r-project.org/web/packages/kknn/index.html. Accessed 12 May 2020

  60. Eric S, Kalinic M, Ilic K, Zloh M (2014) SAR QSAR Environ Res 25:939–966

    Article  CAS  PubMed  Google Scholar 

  61. Kuhn M, Johnson K (2018) Applied predictive modeling. Springer, New York

    Google Scholar 

  62. James G, Witten D, Hastie T, Tibshirani R (2014) An introduction to statistical learning with applications in R. Springer, New York

    Google Scholar 

  63. Natekin A, Knoll A (2013) Front Neurorobot 7:21

    Article  PubMed  PubMed Central  Google Scholar 

  64. Ertl P, Rhode B, Selzer P (2000) J Med Chem 43:3714–3717

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the NSERC Discovery Grant (RES0029477), Alberta Innovates AARP VII Research Grant (RES0043948), and Alzheimer Society of Alberta and Northwest Territories AARP VII Research Grant (RES0043949). Generous computing time provided by WestGrid (www.westgrid.ca) and Compute Canada/Calcul Canada (www.computecanada.ca) is acknowledged. The authors thank Dr. Marcia LeVatte for assistance in editing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally to writing the manuscript and approved the final version.

Corresponding author

Correspondence to Andriy Kovalenko.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (XLSX 224 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, D., Dutta, D., Wishart, D.S. et al. Predicting PAMPA permeability using the 3D-RISM-KH theory: are we there yet?. J Comput Aided Mol Des 35, 261–269 (2021). https://doi.org/10.1007/s10822-020-00364-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-020-00364-4

Keywords

Navigation