Skip to main content
Log in

Identification of novel EED-EZH2 PPI inhibitors using an in silico fragment mapping method

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Enhancer of zeste homolog 2 (EZH2) is a histone lysine methyltransferase that is overexpressed in many cancers. Numerous EZH2 inhibitors have been developed as anticancer agents, but recent studies have also focused on protein–protein interaction (PPI) between embryonic ectoderm development (EED) and EZH2 as a novel drug discovery target. Because EED indirectly enhances EZH2 enzymatic activity, EED-EZH2 PPI inhibitors suppress the methyltransferase activity and inhibit cancer growth. By contrast to the numerous promising EZH2 inhibitors, there are a paucity of EED-EZH2 PPI inhibitors reported in the literature. Here, we aimed to discover novel EED-EZH2 PPI inhibitors by first identifying possible binders of EED using an in-house knowledge-based in silico fragment mapping method. Next, 3D pharmacophore models were constructed from the arrangement pattern of the potential binders mapped onto the EED surface. In all, 16 compounds were selected by 3D pharmacophore-based virtual screening followed by docking-based virtual screening. In vitro evaluation revealed that five of these compounds exhibited inhibitory activities. This study has provided structural insights into the discovery and the molecular design of novel EED-EZH2 PPI inhibitors using an in silico fragment mapping method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Code availability

Fsubsite is freely available for academic use upon request.

Data availability

The datasets generated or analyzed during this study are available from the corresponding author upon request.

References

  1. Fardi M, Solali S, Hagh MF (2018) Epigenetic mechanisms as a new approach in cancer treatment: an updated review. Genes Dis 5:304–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kanwal R, Gupta S (2012) Epigenetic modifications in cancer. Clin Genet 81:303–311

    Article  CAS  PubMed  Google Scholar 

  3. Flavahan WA, Gaskell E, Bernstein BE (2017) Epigenetic plasticity and the hallmarks of cancer. Science 357:eaal2380

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kuzmichev A, Nishioka K, Erdjument-Bromage H, Tempst P, Reinberg D (2002) Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev 16:2893–2905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yoo KH, Hennighausen L (2012) EZH2 methyltransferase and H3K27 methylation in breast cancer. Int J Biol Sci 8:59–65

    Article  CAS  PubMed  Google Scholar 

  6. van Leenders GJLH, Dukers D, Hessels D, van den Kieboom SW, Hulsbergen CA, Witjes JA, Otte AP, Meijer CJ, Raaphorst FM (2007) Polycomb-group oncogenes EZH2, BMI1, and RING1 are overexpressed in prostate cancer with adverse pathologic and clinical features. Eur Urol 52:455–463

    Article  PubMed  Google Scholar 

  7. Raaphorst FM, Meijer CJ, Fieret E, Blokzijl T, Mommers E, Buerger H, Packeisen J, Sewalt RA, Otte AP, van Diest PJ (2003) Poorly differentiated breast carcinoma is associated with increased expression of the human polycomb group EZH2 gene. Neoplasia 5:481–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Duan R, Du W, Guo W (2020) EZH2: a novel target for cancer treatment. J Hematol Oncol 13:104

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kim KH, Roberts CWM (2016) Targeting EZH2 in cancer. Nat Med 22:128–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. FDA (2020) FDA approves tazemetostat for advanced epithelioid sarcoma. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-tazemetostat-advanced-epithelioid-sarcoma. Accessed 24 Jan 2020

  11. Ueda T, Sanada M, Matsui H, Yamasaki N, Honda Z-I, Shih L-Y, Mori H, Inaba T, Ogawa S, Honda H (2012) EED mutants impair polycomb repressive complex 2 in myelodysplastic syndrome and related neoplasms. Leukemia 26:2557–2560

    Article  CAS  PubMed  Google Scholar 

  12. Denisenko O, Shnyreva M, Suzuki H, Bomsztyk K (1998) Point mutations in the WD40 domain of Eed block its interaction with Ezh2. Mol Cell Biol 18:5634–5642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, Jones RS, Zhang Y (2002) Role of histone H3 lysine 27 methylation in polycomb-group silencing. Science 298:1039–1043

    Article  CAS  PubMed  Google Scholar 

  14. Kim W, Bird GH, Neff T, Guo G, Kerenyi MA, Walensky LD, Orkin SH (2013) Targeted disruption of the EZH2/EED complex inhibits EZH2-dependent cancer. Nat Chem Biol 9:643–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kong X, Chen L, Jiao L, Jiang X, Lian F, Lu J, Zhu K, Du D, Liu J, Ding H, Zhang N, Shen J, Zheng M, Chen K, Liu X, Jiang H, Luo C (2014) Astemizole arrests the proliferation of cancer cells by disrupting the EZH2-EED interaction of polycomb repressive complex 2. J Med Chem 57:9512–9521

    Article  CAS  PubMed  Google Scholar 

  16. Chen H, Gao S, Li J, Liu D, Sheng C, Yao C, Jiang W, Wu J, Chen S, Huang W (2015) Wedelolactone disrupts the interaction of EZH2-EED complex and inhibits PRC2-dependent cancer. Oncotarget 6:13049–13059

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhu MR, Du DH, Hu JC, Li LC, Liu JQ, Ding H, Kong XQ, Jiang HL, Chen KX, Luo C (2017) Development of a high-throughput fluorescence polarization assay for the discovery of EZH2-EED interaction inhibitors. Acta Pharmacol Sin 39:302–310

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhu K, Du D, Yang R, Tao H, Zhang H (2020) Identification and assessments of novel and potent small-molecule inhibitors of EED–EZH2 interaction of polycomb repressive complex 2 by computational methods and biological evaluations. Chem Pharm Bull 68:58–63

    Article  Google Scholar 

  19. Qi W, Zhao K, Gu J, Huang Y, Wang Y, Zhang H, Zhang M, Zhang J, Yu Z, Li L, Teng L, Chuai S, Zhang C, Zhao M, Chan H, Chen Z, Fang D, Fei Q, Feng L, Feng L, Gao Y, Ge H, Ge X, Li G, Lingel A, Lin Y, Liu Y, Luo F, Shi M, Wang L, Wang Z, Yu Y, Zeng J, Zeng C, Zhang L, Zhang Q, Zhou S, Oyang C, Atadja P, Li E (2017) An allosteric PRC2 inhibitor targeting the H3K27me3 binding pocket of EED. Nat Chem Biol 13:381–388

    Article  CAS  PubMed  Google Scholar 

  20. He Y, Selvaraju S, Curtin ML, Jakob CG, Zhu H, Comess KM, Shaw B, The J, Lima-Fernandes E, Szewczyk MM, Cheng D, Klinge KL, Li HQ, Pliushchev M, Algire MA, Maag D, Guo J, Dietrich J, Panchal SC, Petros AM, Sweis RF, Torrent M, Bigelow LJ, Senisterra G, Li F, Kennedy S, Wu Q, Osterling DJ, Lindley DJ, Gao W, Galasinski S, Barsyte-Lovejoy D, Vedadi M, Buchanan FG, Arrowsmith CH, Chiang GG, Sun C, Pappano WN (2017) The EED protein-protein interaction inhibitor A-395 inactivates the PRC2 complex. Nat Chem Biol 13:389–395

    Article  CAS  PubMed  Google Scholar 

  21. Read JA, Tart J, Rawlins PB, Gregson C, Jones K, Gao N, Zhu X, Tomlinson R, Code E, Cheung T, Chen H, Kawatkar SP, Bloecher A, Bagal S, O’Donovan DH, Robinson J (2019) Rapid identification of novel allosteric PRC2 inhibitors. ACS Chem Biol 14:2134–2140

    CAS  PubMed  Google Scholar 

  22. Barnash KD, The J, Norris-Drouin JL, Cholensky SH, Worley BM, Li F, Stuckey JI, Brown PJ, Vedadi M, Arrowsmith CH, Frye SV, James LI (2017) Discovery of peptidomimetic ligands of EED as allosteric inhibitors of PRC2. ACS Comb Sci 19:161–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Han Z, Xing X, Hu M, Zhang Y, Liu P, Chai J (2007) Structural basis of EZH2 recognition by EED. Structure 15:1306–1315

    Article  CAS  PubMed  Google Scholar 

  24. Arkin MR, Tang Y, Wells JA (2014) Small-molecule inhibitors of protein-protein interactions: progressing toward the reality. Chem Biol 21:1102–1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ran X, Gestwicki JE (2018) Inhibitors of protein-protein interactions (PPIs): an analysis of scaffold choices and buried surface area. Curr Opin Chem Biol 44:75–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang Z, Kang Y, Li D, Sun H, Dong X, Yao X, Xu L, Chang S, Li Y, Hou T (2018) Benchmark study based on 2P2IDB to gain insights into the discovery of small-molecule PPI inhibitors. J Phys Chem B 122:2544–2555

    Article  CAS  PubMed  Google Scholar 

  27. Souers AJ, Leverson JD, Boghaert ER, Ackler SL, Catron ND, Chen J, Dayton BD, Ding H, Enschede SH, Fairbrother WJ, Huang DC, Hymowitz SG, Jin S, Khaw SL, Kovar PJ, Lam LT, Lee J, Maecker HL, Marsh KC, Mason KD, Mitten MJ, Nimmer PM, Oleksijew A, Park CH, Park CM, Phillips DC, Roberts AW, Sampath D, Seymour JF, Smith ML, Sullivan GM, Tahir SK, Tse C, Wendt MD, Xiao Y, Xue JC, Zhang H, Humerickhouse RA, Rosenberg SH, Elmore SW (2013) ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med 19:202–208

    Article  CAS  PubMed  Google Scholar 

  28. Tron AE, Belmonte MA, Adam A, Aquila BM, Boise LH, Chiarparin E, Cidado J, Embrey KJ, Gangl E, Gibbons FD, Gregory GP, Hargreaves D, Hendricks JA, Johannes JW, Johnstone RW, Kazmirski SL, Kettle JG, Lamb ML, Matulis SM, Nooka AK, Packer MJ, Peng B, Rawlins PB, Robbins DW, Schuller AG, Su N, Yang W, Ye Q, Zheng X, Secrist JP, Clark EA, Wilson DM, Fawell SE, Hird AW (2018) Discovery of Mcl-1-specific inhibitor AZD5991 and preclinical activity in multiple myeloma and acute myeloid leukemia. Nat Commun 9:5341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Guo W, Wisniewski JA, Ji H (2014) Hot spot-based design of small-molecule inhibitors for protein-protein interactions. Bioorg Med Chem Lett 24:2546–2554

    Article  CAS  PubMed  Google Scholar 

  30. Fuller JC, Burgoyne NJ, Jackson RM (2008) Predicting druggable binding sites at the protein-protein interface. Drug Discov Today 14:155–161

    Article  PubMed  Google Scholar 

  31. Yamaotsu N, Hirono S (2018) In silico fragment-mapping method: a new tool for fragment-based/structure-based drug discovery. J Comput Aid Mol Des 32:1229–1245

    Article  CAS  Google Scholar 

  32. Sako Y, Yamaotsu N, Hirono S (2018) Virtual screening for small-molecule inhibitors of PD-1/PD-L1 protein-protein interaction using in silico fragment mapping method. SDRP J Comput Chem Mol Model 2:212–220

    Google Scholar 

  33. Ozawa S, Takahashi M, Yamaotsu N, Hirono S (2019) Structure-based virtual screening for novel chymase inhibitors by in silico fragment mapping. J Mol Graph Model 89:102–108

    Article  CAS  PubMed  Google Scholar 

  34. Li Y, Liu Z, Li J, Han L, Liu J, Zhao Z, Wang R (2014) Comparative assessment of scoring functions on an updated benchmark: 1. Compilation of the test set. J Chem Inf Model 54:1700–1716

    Article  CAS  PubMed  Google Scholar 

  35. Iwase K, Hirono S (1999) Estimation of active conformations of drugs by a new molecular superposing procedure. J Comput Aid Mol Des 13:499–512

    Article  CAS  Google Scholar 

  36. Xu C, Bian C, Yang W, Galka M, Ouyang H, Chen C, Qiu W, Liu H, Jones AE, MacKenzie F, Pan P, Li SS, Wang H, Min J (2010) Binding of different histone marks differentially regulates the activity and specificity of polycomb repressive complex 2 (PRC2). Proc Natl Acad Sci USA 107:19266–19271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W (2013) Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aid Mol Des 27:221–234

    Article  Google Scholar 

  38. Harder E, Damm W, Maple J, Wu C, Reboul M, Xiang JY, Wang L, Lupyan D, Dahlgren MK, Knight JL, Kaus JW, Cerutti DS, Krilov G, Jorgensen WL, Abel R, Friesner RA (2016) OPLS3: a force field providing broad coverage of drug-like small molecules and proteins. J Chem Theory Comput 12:281–296

    Article  CAS  PubMed  Google Scholar 

  39. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749

    Article  CAS  PubMed  Google Scholar 

  40. Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47:1750–1759

    Article  CAS  PubMed  Google Scholar 

  41. Watts KS, Dalal P, Murphy RB, Sherman W, Friesner RA, Shelley JC (2010) ConfGen: a conformational search method for efficient generation of bioactive conformers. J Chem Inf Model 50:534–546

    Article  CAS  PubMed  Google Scholar 

  42. Baell JB, Holloway GA (2010) New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem 53:2719–2740

    Article  CAS  PubMed  Google Scholar 

  43. Bender A, Mussa HY, Glen RC, Reiling S (2004) Similarity searching of chemical databases using atom environment descriptors (MOLPRINT 2D): evaluation of performance. J Chem Inf Comput Sci 44:1708–1718

    Article  CAS  PubMed  Google Scholar 

  44. Salentin S, Schreiber S, Haupt VJ, Adasme MF, Schroeder M (2015) PLIP: fully automated protein-ligand interaction profiler. Nucleic Acids Res 43:W443–W447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Beaudet L, Rodríguez-Suarez R, Venne MH, Caron M, Bédard J, Brechler V, Parent S, Bielefeld-Sévigny M (2008) AlphaLISA immunoassays: the no-wash alternative to ELISAs for research and drug discovery. Nat Methods 5:an8–an9

    Article  CAS  Google Scholar 

  46. Zhou R (2015) Modeling of nanotoxicity. Springer, Berlin

    Book  Google Scholar 

  47. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25

    Article  CAS  Google Scholar 

  48. Oprea TI (2002) Virtual screening in lead discovery: a viewpoint. Molecules 7:51–62

    Article  CAS  PubMed Central  Google Scholar 

  49. Kim HJ, Choo H, Cho YS, No KT, Pae AN (2008) Novel GSK-3β inhibitors from sequential virtual screening. Bioorg Med Chem 16:636–643

    Article  CAS  PubMed  Google Scholar 

  50. de Freitas RF, Schapira M (2017) A systematic analysis of atomic protein–ligand interactions in the PDB. Med Chem Commun 8:1970–1981

    Article  Google Scholar 

  51. Muchmore SW, Debe DA, Metz JT, Brown SP, Martin YC, Hajduk PJ (2008) Application of belief theory to similarity data fusion for use in analog searching and lead hopping. J Chem Inf Model 48:941–948

    Article  CAS  PubMed  Google Scholar 

  52. Jasial S, Hu Y, Vogt M, Bajorath J (2016) Activity-relevant similarity values for fingerprints and implications for similarity searching. F1000Res 5:591

    Article  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

Kensuke Misawa and Shuichi Hirono designed the study. Kensuke Misawa performed the computations, analyzed the data, and wrote the initial draft of the manuscript. Noriyuki Yamaotsu contributed to the development of the methods and interpretation of the data. All authors approved the final version of the manuscript and agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work were appropriately investigated and resolved.

Corresponding authors

Correspondence to Kensuke Misawa or Shuichi Hirono.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary information 1 (PDF 905 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misawa, K., Yamaotsu, N. & Hirono, S. Identification of novel EED-EZH2 PPI inhibitors using an in silico fragment mapping method. J Comput Aided Mol Des 35, 601–611 (2021). https://doi.org/10.1007/s10822-021-00378-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-021-00378-6

Keywords

Navigation