Skip to main content

Advertisement

Log in

A self-paced brain interface system that uses movement related potentials and changes in the power of brain rhythms

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Movement execution results in the simultaneous generation of movement-related potentials (MRP) as well as changes in the power of Mu and Beta rhythms. This paper proposes a new self-paced multi-channel BI that combines features extracted from MRPs and from changes in the power of Mu and Beta rhythms.

We developed a new algorithm to classify the high-dimensional feature space. It uses a two-stage multiple-classifier system (MCS). First, an MCS classifies each neurological phenomenon separately using the information extracted from specific EEG channels (EEG channels are selected by a genetic algorithm). In the second stage, another MCS combines the outputs of MCSs developed in the first stage.

Analysis of the data of four able-bodied subjects shows the superior performance of the proposed algorithm compared with a scheme where the features were all combined in a single feature vector and then classified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Although the evidence from the literature suggests the Beta ERS occurs in the first second after the movement (which was confirmed in this paper that by analyzing the averages of the of Beta rhythms over the epochs in the training set), t finish  = 2 seconds was chosen because the return of the power of the Mu rhythm to the baseline activity usually takes a much longer time. In this paper, we didn't study the optimal (or at least a sub-optimal) choice for t start and t finish . This research is left to future work.

References

  • Arroyo S, Lesser RP, Gordon B, Uematsu S, Jackson D, Webber R (1993) Functional significance of the mu rhythm of human cortex: an electrophysiologic study with subdural electrodes. Electroencephalogr. Clin. Neurophysiol. 87(3): 76–87.

    Article  PubMed  CAS  Google Scholar 

  • Babiloni C, Carducci F, Cincotti F, Rossini PM, Neuper C, Pfurtscheller G, et al (1999) Human movement-related potentials vs desynchronization of EEG alpha rhythm: a high-resolution EEG study. Neuroimage 10(6): 658–665.

    Article  PubMed  CAS  Google Scholar 

  • Back T, Fogel DB, Michalewicz T (2000) Evolutionary Computation. Institute of Physics Publishing, Bristol and Philadelphia.

  • Balbale UH, Higgins JE, Bement SL, Levine SP (1999) Multi-channel analysis of human event-related Cortical Potentials for the development of a Direct Brain Interface. In: the Proc. First Joint BMES/EMBS Conference, vol. 1, p. 447.

  • Bashashati A, Fatourechi M, Ward RK, Birch GE (2006) User Customization of the Feature Generator of an Asynchronous Brain Interface. Ann. Biomed. Eng. 34(6): 1051–1060.

    Google Scholar 

  • Beisteiner R, Hollinger P, Lindinger G, Lang W, Berthoz A (1995) Mental representations of movements. Brain potentials associated with imagination of hand movements. Electroencephalogr. Clin. Neurophysiol. 96(2): 183–193.

    Article  PubMed  CAS  Google Scholar 

  • Birch GE, Bozorgzadeh Z, Mason SG (2002) Initial on-line evaluations of the LF-ASD brain-computer interface with able-bodied and spinal-cord subjects using imagined voluntary motor potentials. IEEE Trans. Neural. Syst. Rehabil. Eng. 10(4): 219–224.

    Article  PubMed  Google Scholar 

  • Birch GE, Lawrence PD, Hare RD (1993) Single-trial processing of event-related potentials using outlier information. IEEE Trans. Biomed. Eng. 40(1): 59–73.

    Article  PubMed  CAS  Google Scholar 

  • Blanchard G, Blankertz B (2004) BCI Competition 2003—Data set IIa: spatial patterns of self-controlled brain rhythm modulations. IEEE Trans. Biomed. Eng. 51(6): 1062–1066.

    Article  PubMed  Google Scholar 

  • Borisoff JF, Mason SG, Bashashati A, Birch GE (2004) Brain-computer interface design for asynchronous control applications: improvements to the LF-ASD asynchronous brain switch. IEEE Trans. Biomed. Eng. 51(6): 985–992.

    Article  PubMed  Google Scholar 

  • Cunnington R, Iansek R, Bradshaw JL, Phillips JG (1996) Movement-related potentials associated with movement preparation and motor imagery. Exp. Brain Res. 111(3): 429–436.

    Article  PubMed  CAS  Google Scholar 

  • Deecke L, Grozinger B, Kornhuber HH (1976) Voluntary finger movement in man: cerebral potentials and theory. Biol. Cybern. 23(2): 99–119.

    Article  PubMed  CAS  Google Scholar 

  • Defebvre L, Bourriez JL, Dujardin K, Derambure P, Destee A, Guieu JD (1994) Spatiotemporal study of Bereitschaftspotential and event-related desynchronization during voluntary movement in Parkinson's disease. Brain Topogr. 6(3): 237–244.

    Article  PubMed  CAS  Google Scholar 

  • Dornhege G, Blankertz B, Curio G, Muller KR (2004) Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms. IEEE Trans. Biomed. Eng. 51(6): 993–1002.

    Article  PubMed  Google Scholar 

  • Feige B, Kristeva-Feige R, Rossi S, Pizzella V, Rossini PM (1996) Neuromagnetic study of movement-related changes in rhythmic brain activity. Brain Res. 734(1–2): 252–260.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg DE (1989) Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Publishing Company, Reading, MA.

  • Graimann B, Huggins JE, Levine SP, Pfurtscheller G (2004) Toward a direct brain interface based on human subdural recordings and wavelet-packet analysis. IEEE Trans. Biomed. Eng. 51(6): 954–962.

    Article  PubMed  Google Scholar 

  • Hallett M (1994) Movement-related cortical potentials. Electromyogr. Clin. Neurophysiol. 34(1): 5–13.

    PubMed  CAS  Google Scholar 

  • Haselsteiner E, Pfurtscheller G (2000) Using time-dependent neural networks for EEG classification. IEEE Trans. Rehabil. Eng. 8(4): 457–463.

    Article  PubMed  CAS  Google Scholar 

  • Hinterberger T, Baier G (2005) Parametric orchestral sonification of EEG in real time. Multimedia, IEEE 12(2): 70–79.

    Article  Google Scholar 

  • Huggins JE, Levine SP, Fessler JA, Sowers WM, Pfurtscheller G, Graimann B, et al (2003) Electrocorticogram as the basis for a direct brain interface: Opportunities for improved detection accuracy. In: the Proc. First International IEEE EMBS Conference on Neural Engineering, pp. 587–590.

  • Kittler J, Hatef M, Duin RPW, Matas J (1998) On combining classifiers. Pattern Anal. Machine Intell., IEEE Trans. 20(3): 226–239.

    Article  Google Scholar 

  • Kohonen T (1990) The self-organizing map. Proc. IEEE, 78:1464–1480.

    Article  Google Scholar 

  • Krauledat M, Dornhege G, Blankertz B, Losch F, Curio G, Muller KR (2004) Improving speed and accuracy of brain-computer interfaces using readiness potential features. In: the Proc. 26th Annual International Conference of the Engineering in Medicine and Biology Society, vol. 6, pp. 4511–4515.

  • Krzanowski WJ, Jonathan P, McCarthy WV, Thomas MR (1995) Discriminant analysis with singular covariance matrices: Methods and applications to spectroscopic data. Appl. Stat. 44(1): 101–115.

    Article  Google Scholar 

  • Lal TN, Schroder M, Hinterberger T, Weston J, Bogdan M, Birbaumer N, et al (2004) Support vector channel selection in BCI. IEEE Trans Biomed. Eng. 51(6): 1003–1010.

    Article  PubMed  Google Scholar 

  • Lemm S, Schafer C, Curio G (2004) BCI Competition 2003—Data set III: probabilistic modeling of sensorimotor mu rhythms for classification of imaginary hand movements. IEEE Trans. Biomed. Eng. 51(6): 1077–1080.

    Article  PubMed  Google Scholar 

  • Lemm S, Blankertz B, Curio G, Muller KR (2005) Spatio-spectral filters for improving the classification of single trial EEG. IEEE Trans. Biomed. Eng. 52(9): 1541–1548.

    Article  PubMed  Google Scholar 

  • Leocani L, Toro C, Manganotti P, Zhuang P, Hallett M (1997) Event-related coherence and event-related desynchronization/synchronization in the 10 Hz and 20 Hz EEG during self-paced movements. Electroencephalogr. Clin. Neurophysiol. 104(3): 199–206.

    Article  PubMed  CAS  Google Scholar 

  • Levine SP, Huggins JE, BeMent SL, Kushwaha RK, Schuh LA, Rohde MM, et al (2000) A direct brain interface based on event-related potentials. IEEE Trans. Rehabil. Eng. 8(2): 180–185.

    Article  PubMed  CAS  Google Scholar 

  • Liu HS, Gao X, Yang F, Gao S (2003) Imagined Hand Movement Identification Based on Spatio-temporal Pattern Recognition of EEG. In: the Proc. 1st International EMBS/BMES Conferences on Neural Engineering, pp. 599–602.

  • Mason SG, Birch GE (2005) Temporal control paradigms for direct brain interfaces—Rethinking the definition of asynchronous and synchronous. In: the Proc. of HCI International Conference.

  • Mason SG, Birch GE (2003) A general framework for brain-computer interface design. IEEE Trans. Neural. Syst. Rehabil. Eng. 11(1): 70–85.

    Article  PubMed  Google Scholar 

  • Mason SG, Birch GE (2000) A brain-controlled switch for asynchronous control applications. IEEE Trans. Biomed. Eng. 47(10): 1297–1307.

    Article  PubMed  CAS  Google Scholar 

  • Mensh BD, Werfel J, Seung HS (2004) BCI Competition 2003—Data set Ia: combining gamma-band power with slow cortical potentials to improve single-trial classification of electroencephalographic signals. IEEE Trans. Biomed. Eng. 51(6): 1052–1056.

    Article  PubMed  Google Scholar 

  • Millan Jdel R, Mourino J (2003) Asynchronous BCI and local neural classifiers: an overview of the adaptive brain interface project. IEEE Trans. Neural. Syst. Rehabil. Eng. 11(2): 159–161.

    Article  PubMed  Google Scholar 

  • Muller KR, Krauledat M, Dornhege G, Curio G, Blankertz B (2004) Machine learning techniques for brain—computer interfaces. Biomed. Tech. 49(1): 11–22.

    Article  Google Scholar 

  • Muller KR, Curio G, Blankertz B, Dornhege G (2003) Combining features for BCI. In ST Beckers, K Obermayer (eds.), Advances in Neural Inf. Proc. Systems (NIPS 02), MIT Press.

  • Narici L, Pizzella V, Romani GL, Torrioli G, Traversa R, Rossini PM (1990) Evoked alpha- and mu-rhythm in humans: a neuromagnetic study. Brain Res. 520(1–2): 222–231.

    Article  PubMed  CAS  Google Scholar 

  • Peters BO, Pfurtscheller G, Flyvbjerg H (2001) Automatic differentiation of multichannel EEG signals. IEEE Trans. Biomed. Eng. 48(1): 111–116.

    Article  PubMed  CAS  Google Scholar 

  • Pfurtscheller G (1981) Central beta rhythm during sensorimotor activities in man. Electroencephalogr. Clin. Neurophysiol. 51(3): 253–264.

    Article  PubMed  CAS  Google Scholar 

  • Pfurtscheller G (1977) Graphical display and statistical evaluation of event-related desynchronization (ERD). Electroencephalogr. Clin. Neurophysiol. 43(5): 757–760.

    Article  PubMed  CAS  Google Scholar 

  • Pfurtscheller G, Lopes da Silva FH (1999) Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophysiol. 110(11): 1842–1857.

    Article  PubMed  CAS  Google Scholar 

  • Pfurtscheller G, Aranibar A (1979) Evaluation of event-related desynchronization (ERD) preceding and following voluntary self-paced movement. Electroencephalogr. Clin. Neurophysiol. 46(2): 138–146.

    Article  PubMed  CAS  Google Scholar 

  • Pfurtscheller G, Aranibar A (1977) Event-related cortical desynchronization detected by power measurements of scalp EEG. Electroencephalogr. Clin. Neurophysiol. 42(6): 817–826.

    Article  PubMed  CAS  Google Scholar 

  • Pfurtscheller G, Neuper C, Flotzinger D, Pregenzer M (1997) EEG-based discrimination between imagination of right and left hand movement. Electroencephalogr. Clin. Neurophysiol. 103(6): 642–651.

    Article  PubMed  CAS  Google Scholar 

  • Pfurtscheller G, Pichler-Zalaudek K, Ortmayr B, Diez J, Reisecker F (1998) Postmovement beta synchronization in patients with Parkinson's disease. J. Clin. Neurophysiol. 15(3): 243–50.

    Article  PubMed  CAS  Google Scholar 

  • Porro CA, Francescato MP, Cettolo V, Diamond ME, Baraldi P, Zuiani C, et al, (1996) Primary motor and sensory cortex activation during motor performance and motor imagery: a functional magnetic resonance imaging study. J. Neurosci. 16(23): 7688–7698.

    PubMed  CAS  Google Scholar 

  • Pregenzer M, Pfurtscheller G (1999) Frequency component selection for an EEG-based brain to computer interface. IEEE Trans. Rehabil. Eng. 7(4): 413–419.

    Article  PubMed  CAS  Google Scholar 

  • Samar VJ, Bopardikar A, Rao R, Swartz K (1999) Wavelet analysis of neuroelectric waveforms: a conceptual tutorial. Brain Lang. 66(1): 7–60.

    Article  PubMed  CAS  Google Scholar 

  • Scherer R, Muller GR, Neuper C, Graimann B, Pfurtscheller G (2004) An asynchronously controlled EEG-based virtual keyboard: improvement of the spelling rate. IEEE Trans. Biomed. Eng. 51(6): 979–984.

    Article  PubMed  Google Scholar 

  • Shibasaki H, Barrett G, Halliday E, Halliday AM (1980) Components of the movement-related cortical potential and their scalp topography. Electroencephalogr. Clin. Neurophysiol. 49(3–4): 213–226.

    PubMed  CAS  Google Scholar 

  • Szurhaj W, Derambure P, Labyt E, Cassim F, Bourriez JL, Isnard J, et al (2003) Basic mechanisms of central rhythms reactivity to preparation and execution of a voluntary movement: a stereoelectroencephalographic study. Clin. Neurophysiol. 114(1): 107–119.

    Article  PubMed  Google Scholar 

  • Tarkka IM, Hallett M (1990) Cortical topography of premotor and motor potentials preceding self-paced, voluntary movement of dominant and non-dominant hands. Electroencephalogr. Clin. Neurophysiol. 75(2): 36–43.

    Article  PubMed  CAS  Google Scholar 

  • Tax DMJ, Breukelen MV, Duin, RPW, Kittler J (2000) Combining multiple classifiers by averaging or multiplying? Pattern Recognit. 33: 1475–1485.

    Article  Google Scholar 

  • Toro C, Deuschl G, Thatcher R, Sato S, Kufta C, Hallett M (1994) Event-related desynchronization and movement-related cortical potentials on the ECoG and EEG. Electroencephalogr. Clin. Neurophysiol. 93(5): 380–389.

    PubMed  CAS  Google Scholar 

  • Townsend G, Graimann B, Pfurtscheller G (2004) Continuous EEG classification during motor imagery–simulation of an asynchronous BCI. IEEE Trans. Neural. Syst. Rehabil. Eng. 12(2): 258–265.

    Article  PubMed  Google Scholar 

  • Tsymbal A, Puuronen S, Patterson DW (2003) Ensemble feature selection with the simple Bayesian classification. Inf. Fusion 4(2): 87–100.

    Article  Google Scholar 

  • Urbano A, Babiloni C, Onorati P, Babiloni F (1996) Human cortical activity related to unilateral movements. A high resolution EEG study. Neuroreport 8(1): 203–206.

    Article  PubMed  CAS  Google Scholar 

  • Urbano A, Babiloni C, Onorati P, Carducci F, Ambrosini A, Fattorini L (1998) Responses of human primary sensorimotor and supplementary motor areas to internally triggered unilateral and simultaneous bilateral one-digit movements. A high-resolution EEG study. Eur. J. Neurosci. 10(2): 765–770.

    Article  PubMed  CAS  Google Scholar 

  • Verikas A, Lipnickas A, Malmqvist K, Bacauskiene M, Gelzinis A (1999) Soft combination of neural classifiers: A comparative study. Pattern Recognit. Lett. 20(4): 429–444.

    Article  Google Scholar 

  • Wang Y, Zhang Z, Li Y, Gao X, Gao S, Yang F (2004) BCI Competition 2003—Data set IV: an algorithm based on CSSD and FDA for classifying single-trial EEG. IEEE Trans. Biomed. Eng. 51(6): 1081–1086.

    Article  PubMed  Google Scholar 

  • Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113(6): 767–791.

    Article  PubMed  Google Scholar 

  • Xu W, Guan C, Siong CE, Ranganatha S, Thulasidas M, Wu M (2004) High accuracy classification of EEG signal. In: IEEE International Conference on Pattern Recognition (ICPRA’04), pp. 391–394.

  • Yom-Tov E, Inbar GF (2003) Detection of movement-related potentials from the electro-encephalogram for possible use in a brain-computer interface. Med. Biol. Eng. Comput. 41(1): 85–93.

    Article  PubMed  CAS  Google Scholar 

  • Yoon H, Yang K, Shahabi C (2005) Feature subset selection and feature ranking for multivariate time series. Knowledge Data Eng., IEEE Trans. 17(9): 1186–1198.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the NSERC under Grant 90278-06 and the CIHR under Grant MOP-72711. This research was enabled by the use of WestGrid computing resources, which are funded in part by the Canada Foundation for Innovation, Alberta Innovation and Science, BC Advanced Education, and the participating research institutions. WestGrid equipment is provided by IBM, Hewlett Packard and SGI. The authors also would like to thank Mr. Craig Wilson for his valuable comments on this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrdad Fatourechi.

Additional information

Action Editor: S. Schiff

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fatourechi, M., Birch, G.E. & Ward, R.K. A self-paced brain interface system that uses movement related potentials and changes in the power of brain rhythms. J Comput Neurosci 23, 21–37 (2007). https://doi.org/10.1007/s10827-006-0017-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-006-0017-3

Keywords

Navigation