Skip to main content
Log in

A model that integrates eye velocity commands to keep track of smooth eye displacements

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Past results have reported conflicting findings on the oculomotor system’s ability to keep track of smooth eye movements in darkness. Whereas some results indicate that saccades cannot compensate for smooth eye displacements, others report that memory-guided saccades during smooth pursuit are spatially correct. Recently, it was shown that the amount of time before the saccade made a difference: short-latency saccades were retinotopically coded, whereas long-latency saccades were spatially coded. Here, we propose a model of the saccadic system that can explain the available experimental data. The novel part of this model consists of a delayed integration of efferent smooth eye velocity commands. Two alternative physiologically realistic neural mechanisms for this integration stage are proposed. Model simulations accurately reproduced prior findings. Thus, this model reconciles the earlier contradictory reports from the literature about compensation for smooth eye movements before saccades because it involves a slow integration process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen RA, Asanuma C, Essick G, Siegel RM (1990a) Corticocortical connections of anatomically and physiologically defined subdivisions within the inferior parietal lobule. J. Comp. Neurol. 296: 65–113.

    PubMed  CAS  Google Scholar 

  • Andersen RA, Bracewell RM, Barash S, Gnadt JW, Fogassi L (1990b) Eye position effects on visual, memory, and saccade-related activity in areas LIP and 7a of macaque. J. Neurosci. 10: 1176–1196.

    PubMed  CAS  Google Scholar 

  • Andersen RA, Brotchie PR, Mazzoni P (1992) Evidence for the lateral intraparietal area as the parietal eye field. Curr. Opin. Neurobiol. 2: 840–846.

    PubMed  CAS  Google Scholar 

  • Andersen RA, Snyder LH, Bradley DC, Xing J (1997) Multimodal representation of space in the posterior parietal cortex and its use in planning movements. Annu. Rev. Neurosci. 20: 303–330.

    PubMed  CAS  Google Scholar 

  • Aslin RN, Shea SL (1987) The amplitude and angle of saccades to double-step target displacements. Vision Res. 27: 1925–1942.

    PubMed  CAS  Google Scholar 

  • Baker JT, Harper TM, Snyder LH (2003) Spatial memory following shifts of gaze. I. Saccades to memorized world-fixed and gaze-fixed targets. J. Neurophysiol 89: 2564–2576.

    PubMed  Google Scholar 

  • Barash S, Bracewell RM, Fogassi L, Gnadt JW, Andersen RA (1991) Saccade-related activity in the lateral intraparietal area. II. Spatial properties. J. Neurophysiol 66: 1109–1124.

    PubMed  CAS  Google Scholar 

  • Barborica A, Ferrera VP (2003) Estimating invisible target speed from neuronal activity in monkey frontal eye field. Nat. Neurosci. 6: 66–74.

    PubMed  CAS  Google Scholar 

  • Becker W (1991) Saccades. In: Carpenter R, ed. Eye Movements MacMillan Press, Houndmills, UK, pp. 95–137.

    Google Scholar 

  • Becker W, Jürgens R (1979) An analysis of the saccadic system by means of double step stimuli. Vision. Res. 19: 967–983.

    PubMed  CAS  Google Scholar 

  • Bennett SJ, Barnes GR (2003) Human ocular pursuit during the transient disappearance of a visual target. J. Neurophysiol 90: 2504–2520.

    PubMed  Google Scholar 

  • Bennett SJ, Barnes GR, Orban de Xivry J-J, Lefèvre P (2004) Ocular pursuit to a predictable velocity and/or position change during the occlusion of a moving target. In: Annual Meeting of the Society for Neuroscience, vol Program No. 712.6. 2004 Abstract Viewer/Itinerary Planner, San Diego.

  • Blohm G, Missal M, Lefèvre P (2003) Interaction between smooth anticipation and saccades during ocular orientation in darkness. J. Neurophysiol. 89: 1423–1433.

    PubMed  Google Scholar 

  • Blohm G, Missal M, Lefèvre P (2005) Processing of retinal and extraretinal signals for memory-guided saccades during smooth pursuit. J. Neurophysiol. 93: 1510–1522.

    PubMed  Google Scholar 

  • Bradley DC, Maxwell M, Andersen RA, Banks MS, Shenoy KV (1996) Mechanisms of heading perception in primate visual cortex. Science 273: 1544–1547.

    PubMed  CAS  Google Scholar 

  • Bremmer F, Distler C, Hoffmann KP (1997) Eye position effects in monkey cortex. II. Pursuit- and fixation- related activity in posterior parietal areas LIP and 7A. J. Neurophysiol. 77: 962–977.

    PubMed  CAS  Google Scholar 

  • Bremmer F, Duhamel JR, Ben Hamed S, Graf W (2002) Heading encoding in the macaque ventral intraparietal area (VIP). Eur. J. Neurosci. 16: 1554–1568.

    PubMed  Google Scholar 

  • Brotchie PR, Andersen RA, Snyder LH, Goodman SJ (1995) Head position signals used by parietal neurons to encode locations of visual stimuli. Nature 375: 232–235.

    PubMed  CAS  Google Scholar 

  • Buisseret-Delmas C (1988) Sagittal organization of the olivocerebellonuclear pathway in the rat. I. Connections with the nucleus fastigii and the nucleus vestibularis lateralis. Neurosci. Res. 5: 475–493.

    PubMed  CAS  Google Scholar 

  • Carpenter RH, Williams ML (1995) Neural computation of log likelihood in control of saccadic eye movements [see comments]. Nature 377: 59–62.

    PubMed  CAS  Google Scholar 

  • Cavada C, Goldman-Rakic PS (1989) Posterior parietal cortex in rhesus monkey: I. Parcellation of areas based on distinctive limbic and sensory corticocortical connections. J. Comp. Neurol. 287: 393–421.

    PubMed  CAS  Google Scholar 

  • Chance FS, Abbott LF, Reyes AD (2002) Gain modulation from background synaptic input. Neuron. 35: 773–782.

    PubMed  CAS  Google Scholar 

  • Cheng K, Hasegawa T, Saleem KS, Tanaka K (1994) Comparison of neuronal selectivity for stimulus speed, length, and contrast in the prestriate visual cortical areas V4 and MT of the macaque monkey. J. Neurophysiol. 71: 2269–2280.

    PubMed  CAS  Google Scholar 

  • Clower DM, West RA, Lynch JC, Strick PL (2001) The inferior parietal lobule is the target of output from the superior colliculus, hippocampus, and cerebellum. J. Neurosci. 21: 6283–6291.

    PubMed  CAS  Google Scholar 

  • Colby CL, Duhamel JR, Goldberg ME (1993) Ventral intraparietal area of the macaque: anatomic location and visual response properties. J. Neurophysiol. 69: 902–914.

    PubMed  CAS  Google Scholar 

  • Colby CL, Goldberg ME (1999) Space and attention in parietal cortex. Annu. Rev. Neurosci. 22: 319–349.

    PubMed  CAS  Google Scholar 

  • Crandall WF, Keller EL (1985) Visual and oculomotor signals in nucleus reticularis tegmenti pontis in alert monkey. J. Neurophysiol. 54: 1326–1345.

    PubMed  CAS  Google Scholar 

  • Curtis CE, Rao VY, D’Esposito M (2004) Maintenance of spatial and motor codes during oculomotor delayed response tasks. J. Neurosci. 24: 3944–3952.

    PubMed  CAS  Google Scholar 

  • Dassonville P, Schlag J, Schlag-Rey M (1992) The frontal eye field provides the goal of saccadic eye movement. Exp. Brain Res. 89: 300–310.

    PubMed  CAS  Google Scholar 

  • de Brouwer S, Missal M, Barnes G, Lefèvre P (2002a) Quantitative analysis of catch-up saccades during sustained pursuit. J. Neurophysiol. 87: 1772–1780.

    PubMed  Google Scholar 

  • de Brouwer S, Missal M, Lefèvre P (2001) Role of retinal slip in the prediction of target motion during smooth and saccadic pursuit. J. Neurophysiol. 86: 550–558.

    PubMed  CAS  Google Scholar 

  • de Brouwer S, Yuksel D, Blohm G, Missal M, Lefèvre P (2002b) What triggers catch-up saccades during visual tracking? J. Neurophysiol. 87: 1646–1650.

    PubMed  Google Scholar 

  • DeAngelis GC, Uka T (2003) Coding of horizontal disparity and velocity by MT neurons in the alert macaque. J. Neurophysiol. 89: 1094–1111.

    PubMed  Google Scholar 

  • Dominey PF, Schlag J, Schlag-Rey M, Arbib MA (1997) Colliding saccades evoked by frontal eye field stimulation: artifact or evidence for an oculomotor compensatory mechanism underlying double-step saccades? Biol. Cybern. 76: 41–52.

    PubMed  CAS  Google Scholar 

  • Droulez J, Berthoz A (1988) Spatial and temporal transformations in visuo-motor coordination. In: Eckmiller R, van den Malsburg C, eds. Neural Computers, vol F41. Springer, Berlin, pp. 345–357.

    Google Scholar 

  • Droulez J, Berthoz A (1991) A neural network model of sensoritopic maps with predictive short-term memory properties. Proc. Natl. Acad. Sci. USA 88: 9653–9657.

    PubMed  CAS  Google Scholar 

  • Duhamel JR, Colby CL, Goldberg ME (1992a) The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255: 90–92.

    PubMed  CAS  Google Scholar 

  • Duhamel JR, Goldberg ME, Fitzgibbon EJ, Sirigu A, Grafman J (1992b) Saccadic dysmetria in a patient with a right frontoparietal lesion. The importance of corollary discharge for accurate spatial behaviour. Brain 115: 1387–1402.

    PubMed  Google Scholar 

  • Dursteler MR, Wurtz RH, Newsome WT (1987) Directional pursuit deficits following lesions of the foveal representation within the superior temporal sulcus of the macaque monkey. J. Neurophysiol. 57: 1262–1287.

    PubMed  CAS  Google Scholar 

  • Eccles JC, Ito M, Szentagothai J (1967) The cerebellum as a neural machine. Springer, Berlin, Heidelberg, New York.

  • Felleman DJ, Kaas JH (1984) Receptive-field properties of neurons in middle temporal visual area (MT) of owl monkeys. J. Neurophysiol. 52: 488–513.

    PubMed  CAS  Google Scholar 

  • Gellman RS, Carl JR (1991) Motion processing for saccadic eye movements in humans. Exp. Brain Res. 84: 660–667.

    PubMed  CAS  Google Scholar 

  • Gellman RS, Fletcher WA (1992) Eye position signals in human saccadic processing. Exp. Brain Res. 89: 425–434.

    PubMed  CAS  Google Scholar 

  • Ghez C, Thach WT (2000) The Cerebellum. In: ER Kandel, JH Schwartz, Jessell TM, eds. Principles of Neural Science, McGraw-Hill, Nex York, pp. 832–852.

    Google Scholar 

  • Gnadt JW, Andersen RA (1988) Memory related motor planning activity in posterior parietal cortex of macaque. Exp. Brain Res. 70: 216–220.

    PubMed  CAS  Google Scholar 

  • Gold JI, Shadlen MN (2001) Neural computations that underlie decisions about sensory stimuli. Trends Cogn. Sci. 5: 10–16.

    PubMed  Google Scholar 

  • Goossens HH, Van Opstal AJ (1997) Local feedback signals are not distorted by prior eye movements: Evidence from visually evoked double saccades. J. Neurophysiol. 78: 533–538.

    PubMed  CAS  Google Scholar 

  • Hallett PE, Lightstone AD (1976a) Saccadic eye movements to flashed targets. Vision Res. 16: 107–114.

    PubMed  CAS  Google Scholar 

  • Hallett PE, Lightstone AD (1976b) Saccadic eye movements towards stimuli triggered by prior saccades. Vision Res. 16: 99–106.

    PubMed  CAS  Google Scholar 

  • Hanes DP, Schall JD (1996) Neural control of voluntary movement initiation. Science 274: 427–430.

    PubMed  CAS  Google Scholar 

  • Heide W, Blankenburg M, Zimmermann E, Kompf D (1995) Cortical control of double-step saccades: Implications for spatial orientation. Ann. Neurol. 38: 739–748.

    PubMed  CAS  Google Scholar 

  • Henriques DY, Klier EM, Smith MA, Lowy D, Crawford JD (1998) Gaze-centered remapping of remembered visual space in an open-loop pointing task. J. Neurosci. 18: 1583–1594.

    PubMed  CAS  Google Scholar 

  • Herter TM, Guitton D (1998) Human head-free gaze saccades to targets flashed before gaze-pursuit are spatially accurate. J. Neurophysiol. 80: 2785–2789.

    PubMed  CAS  Google Scholar 

  • Hoddevik GH, Brodal A, Walberg F (1976) The olivocerebellar projection in the cat studied with the method of retrograde axonal transport of horseradish peroxidase. III. The projection to the vermal visual area. J. Comp. Neurol. 169: 155–170.

    PubMed  CAS  Google Scholar 

  • Ilg UJ, Thier P (2003) Visual tracking neurons in primate area MST are activated by smooth-pursuit eye movements of an “imaginary” target. J. Neurophysiol. 90: 1489–1502.

    PubMed  Google Scholar 

  • Jürgens R, Becker W, Kornhuber HH (1981) Natural and drug-induced variations of velocity and duration of human saccadic eye movements: evidence for a control of the neural pulse generator by local feedback. Biol. Cybern. 39: 87–96.

    PubMed  Google Scholar 

  • Keller E, Johnsen SD (1990) Velocity prediction in corrective saccades during smooth-pursuit eye movements in monkey. Exp. Brain Res. 80: 525–531.

    PubMed  CAS  Google Scholar 

  • Keller EL, Crandall WF (1983) Neuronal responses to optokinetic stimuli in pontine nuclei of behaving monkey. J. Neurophysiol. 49: 169–187.

    PubMed  CAS  Google Scholar 

  • Keller EL, Gandhi NJ, Weir PT (1996) Discharge of superior collicular neurons during saccades made to moving targets. J. Neurophysiol. 76: 3573–3577.

    PubMed  CAS  Google Scholar 

  • Kim JN, Shadlen MN (1999) Neural correlates of a decision in the dorsolateral prefrontal cortex of the macaque. Nat. Neurosci. 2: 176–185.

    PubMed  Google Scholar 

  • Komatsu H, Wurtz RH (1988a) Relation of cortical areas MT and MST to pursuit eye movements. I. Localization and visual properties of neurons. J. Neurophysiol. 60: 580–603.

    PubMed  CAS  Google Scholar 

  • Komatsu H, Wurtz RH (1988b) Relation of cortical areas MT and MST to pursuit eye movements. III. Interaction with full-field visual stimulation. J. Neurophysiol. 60: 621–644.

    PubMed  CAS  Google Scholar 

  • Krauzlis RJ (2004) Recasting the smooth pursuit eye movement system. J. Neurophysiol. 91: 591–603.

    PubMed  Google Scholar 

  • Krauzlis RJ, Stone LS (1999) Tracking with the mind’s eye. Trends Neurosci. 22: 544–550.

    PubMed  CAS  Google Scholar 

  • Lefèvre P, Quaia C, Optican LM (1998) Distributed model of control of saccades by superior colliculus and cerebellum. Neural Networks 11: 1175–1190.

    PubMed  Google Scholar 

  • Leon MI, Shadlen MN (2003) Representation of time by neurons in the posterior parietal cortex of the macaque. Neuron. 38: 317–327.

    PubMed  CAS  Google Scholar 

  • Lewis JW, Van Essen DC (2000) Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey. J. Comp. Neurol. 428: 112–137.

    PubMed  CAS  Google Scholar 

  • Lewis RF, Zee DS, Hayman MR, Tamargo RJ (2001) Oculomotor function in the rhesus monkey after deafferentation of the extraocular muscles. Exp. Brain Res. 141: 349–358.

    PubMed  CAS  Google Scholar 

  • Lisberger SG, Fuchs AF (1978a) Role of primate flocculus during rapid behavioral modification of vestibuloocular reflex. I. Purkinje cell activity during visually guided horizontal smooth-pursuit eye movements and passive head rotation. J. Neurophysiol. 41: 733–763.

    PubMed  CAS  Google Scholar 

  • Lisberger SG, Fuchs AF (1978b) Role of primate flocculus during rapid behavioral modification of vestibuloocular reflex. II. Mossy fiber firing patterns during horizontal head rotation and eye movement. J. Neurophysiol. 41: 764–777.

    PubMed  CAS  Google Scholar 

  • Maunsell JH, Van Essen DC (1983) Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. J. Neurophysiol. 49: 1127–1147.

    PubMed  CAS  Google Scholar 

  • May JG, Keller EL, Suzuki DA (1988) Smooth-pursuit eye movement deficits with chemical lesions in the dorsolateral pontine nucleus of the monkey. J. Neurophysiol. 59: 952–977.

    PubMed  CAS  Google Scholar 

  • Mays LE, Sparks DL (1980) Saccades are spatially, not retinocentrically, coded. Science 208: 1163–1165.

    PubMed  CAS  Google Scholar 

  • Mazurek ME, Roitman JD, Ditterich J, Shadlen MN (2003) A role for neural integrators in perceptual decision making. Cereb. Cortex. 13: 1257–1269.

    PubMed  Google Scholar 

  • McKenzie A, Lisberger SG (1986) Properties of signals that determine the amplitude and direction of saccadic eye movements in monkeys. J. Neurophysiol. 56: 196–207.

    PubMed  CAS  Google Scholar 

  • Medendorp WP, Smith MA, Tweed DB, Crawford JD (2002) Rotational remapping in human spatial memory during eye and head motion. J. Neurosci. 22: RC196.

    PubMed  Google Scholar 

  • Merriam EP, Genovese CR, Colby CL (2003) Spatial updating in human parietal cortex. Neuron. 39: 361–373.

    PubMed  CAS  Google Scholar 

  • Miles FA, Fuller JH (1975) Visual tracking and the primate flocculus. Science 189: 1000–1002.

    PubMed  CAS  Google Scholar 

  • Missal M, Heinen SJ (2001) Facilitation of smooth pursuit initiation by electrical stimulation in the supplementary eye fields. J. Neurophysiol. 86: 2413–2425.

    PubMed  CAS  Google Scholar 

  • Missal M, Heinen SJ (2004) Supplementary eye fields stimulation facilitates anticipatory pursuit. J. Neurophysiol. 92: 1257–1262.

    PubMed  CAS  Google Scholar 

  • Mushiake H, Fujii N, Tanji J (1999) Microstimulation of the lateral wall of the intraparietal sulcus compared with the frontal eye field during oculomotor tasks. J. Neurophysiol. 81: 1443–1448.

    PubMed  CAS  Google Scholar 

  • Mustari MJ, Fuchs AF, Wallman J (1988) Response properties of dorsolateral pontine units during smooth pursuit in the rhesus macaque. J. Neurophysiol. 60: 664–686.

    PubMed  CAS  Google Scholar 

  • Nagao S, Kitamura T, Nakamura N, Hiramatsu T, Yamada J (1997) Differences of the primate flocculus and ventral paraflocculus in the mossy and climbing fiber input organization. J. Comp. Neurol. 382: 480–498.

    PubMed  CAS  Google Scholar 

  • Neal JW, Pearson RCA, Powell TPS (1990) The connections of area PG, 7a, with cortex in the parietal, occipital and temporal lobes of the monkey. Brain Research 532: 249–264.

    PubMed  CAS  Google Scholar 

  • Newsome WT, Wurtz RH, Dursteler MR, Mikami A (1985) Deficits in visual motion processing following ibotenic acid lesions of the middle temporal visual area of the macaque monkey. J. Neurosci. 5: 825–840.

    PubMed  CAS  Google Scholar 

  • Newsome WT, Wurtz RH, Komatsu H (1988) Relation of cortical areas MT and MST to pursuit eye movements. II. Differentiation of retinal from extraretinal inputs. J. Neurophysiol. 60: 604–620.

    PubMed  CAS  Google Scholar 

  • Noda H, Fujikado T (1987) Topography of the oculomotor area of the cerebellar vermis in macaques as determined by microstimulation. J. Neurophysiol. 58: 359–378.

    PubMed  CAS  Google Scholar 

  • Ohtsuka K (1994) Properties of memory-guided saccades toward targets flashed during smooth pursuit in human subjects. Invest Ophthalmol Vis. Sci. 35: 509–514.

    PubMed  CAS  Google Scholar 

  • Optican LM, Quaia C (2002) Distributed model of collicular and cerebellar function during saccades. Ann. N Y Acad. Sci. 956: 164–177.

    Article  PubMed  Google Scholar 

  • Paré M, Wurtz RH (1997) Monkey posterior parietal cortex neurons antidromically activated from superior colliculus. J. Neurophysiol. 78: 3493–3497.

    PubMed  Google Scholar 

  • Pierrot-Deseilligny C, Rivaud S, Gaymard B, Agid Y (1991) Cortical control of memory-guided saccades in man. Exp. Brain Res. 83: 607–617.

    PubMed  CAS  Google Scholar 

  • Quaia C, Lefèvre P, Optican LM (1999) Model of the control of saccades by superior colliculus and cerebellum. J. Neurophysiol. 82: 999–1018.

    PubMed  CAS  Google Scholar 

  • Quaia C, Optican LM, Goldberg ME (1998) The maintenance of spatial accuracy by the perisaccadic remapping of visual receptive fields. Neural. Networks 11: 1229–1240.

    PubMed  Google Scholar 

  • Rambold H, Churchland A, Selig Y, Jasmin L, Lisberger SG (2002) Partial ablations of the flocculus and ventral paraflocculus in monkeys cause linked deficits in smooth pursuit eye movements and adaptive modification of the VOR. J. Neurophysiol. 87: 912–924.

    PubMed  CAS  Google Scholar 

  • Rao SM, Mayer AR, Harrington DL (2001) The evolution of brain activation during temporal processing. Nat. Neurosci. 4: 317–323.

    PubMed  CAS  Google Scholar 

  • Reddi BA, Asrress KN, Carpenter RH (2003) Accuracy, information, and response time in a saccadic decision task. J. Neurophysiol. 90: 3538–3546.

    PubMed  CAS  Google Scholar 

  • Reddi BA, Carpenter RH (2000) The influence of urgency on decision time. Nat. Neurosci. 3: 827–830.

    PubMed  CAS  Google Scholar 

  • Robinson DA (1970) Oculomotor unit behavior in the monkey. J. Neurophysiol. 33: 393–403.

    PubMed  CAS  Google Scholar 

  • Robinson DA (1973) Models of the saccadic eye movement control system. Kybernetik 14: 71–83.

    PubMed  CAS  Google Scholar 

  • Robinson FR, Fuchs AF (2001) The role of the cerebellum in voluntary eye movements. Annu. Rev. Neurosci. 24: 981–1004.

    PubMed  CAS  Google Scholar 

  • Roitman JD, Shadlen MN (2002) Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task. J. Neurosci. 22: 9475–9489.

    PubMed  CAS  Google Scholar 

  • Ruskell GL (1999) Extraocular muscle proprioceptors and proprioception. Prog. Retin. Eye Res. 18: 269–291.

    PubMed  CAS  Google Scholar 

  • Sakata H, Shibutani H, Kawano K (1983) Functional properties of visual tracking neurons in posterior parietal association cortex of the monkey. J. Neurophysiol. 49: 1364–1380.

    PubMed  CAS  Google Scholar 

  • Salinas E (2003) Self-sustained activity in networks of gain-modulated neurons. Neurocomputing 52–54: 913–918.

    Article  Google Scholar 

  • Salinas E, Sejnowski TJ (2001) Gain modulation in the central nervous system: where behavior, neurophysiology, and computation meet. Neuroscientist 7: 430–440.

    Article  PubMed  CAS  Google Scholar 

  • Salinas E, Thier P (2000) Gain modulation: a major computational principle of the central nervous system. Neuron. 27: 15–21.

    PubMed  CAS  Google Scholar 

  • Schall JD (2001) Neural basis of deciding, choosing and acting. Nat. Rev. Neurosci. 2: 33–42.

    PubMed  CAS  Google Scholar 

  • Schall JD, Bichot NP (1998) Neural correlates of visual and motor decision processes. Curr. Opin. Neurobiol. 8: 211–217.

    PubMed  CAS  Google Scholar 

  • Schall JD, Hanes DP (1998) Neural mechanisms of selection and control of visually guided eye movements. Neural Networks 11: 1241–1251.

    PubMed  Google Scholar 

  • Schall JD, Thompson KG (1999) Neural selection and control of visually guided eye movements. Annu. Rev. Neurosci. 22: 241–259.

    PubMed  CAS  Google Scholar 

  • Schlack A, Hoffmann KP, Bremmer F (2003) Selectivity of macaque ventral intraparietal area (area VIP) for smooth pursuit eye movements. J. Physiol. 551: 551–561.

    PubMed  CAS  Google Scholar 

  • Schlag J, Schlag-Rey M (1990) Colliding saccades may reveal the secret of their marching orders. Trends Neurosci. 13: 410–415.

    PubMed  CAS  Google Scholar 

  • Schlag J, Schlag-Rey M, Dassonville P (1989) Interactions between natural and electrically evoked saccades. II. At what time is eye position sampled as a reference for the localization of a target? Exp. Brain Res. 76: 548–558.

    PubMed  CAS  Google Scholar 

  • Schlag J, Schlag-Rey M, Dassonville P (1990) Saccades can be aimed at the spatial location of targets flashed during pursuit. J. Neurophysiol. 64: 575–581.

    PubMed  CAS  Google Scholar 

  • Shadlen MN, Newsome WT (1996) Motion perception: seeing and deciding. Proc. Natl. Acad. Sci. USA 93: 628–633.

    PubMed  CAS  Google Scholar 

  • Smeets JBJ, Bekkering H (2000) Prediction of saccadic amplitude during smooth pursuit eye movements. Human Movement Science 19: 275–295.

    Google Scholar 

  • Sommer MA (2003) The role of the thalamus in motor control. Curr. Opin. Neurobiol. 13: 663–670.

    PubMed  CAS  Google Scholar 

  • Sommer MA, Wurtz RH (2002) A pathway in primate brain for internal monitoring of movements. Science 296: 1480–1482.

    PubMed  CAS  Google Scholar 

  • Sommer MA, Wurtz RH (2004a) What the brain stem tells the frontal cortex. I. Oculomotor signals sent from superior colliculus to frontal eye field via mediodorsal thalamus. J. Neurophysiol. 91: 1381–1402.

    PubMed  Google Scholar 

  • Sommer MA, Wurtz RH (2004b) What the brain stem tells the frontal cortex. II. Role of the SC-MD-FEF pathway in corollary discharge. J. Neurophysiol. 91: 1403–1423.

    PubMed  Google Scholar 

  • Squatrito S, Maioli MG (1997) Encoding of smooth pursuit direction and eye position by neurons of area MSTd of macaque monkey. J. Neurosci. 17: 3847–3860.

    PubMed  CAS  Google Scholar 

  • Suzuki DA, Keller EL (1988a) The role of the posterior vermis of monkey cerebellum in smooth-pursuit eye movement control. I. Eye and head movement-related activity. J. Neurophysiol. 59: 1–18.

    PubMed  CAS  Google Scholar 

  • Suzuki DA, Keller EL (1988b) The role of the posterior vermis of monkey cerebellum in smooth-pursuit eye movement control. II. Target velocity-related Purkinje cell activity. J. Neurophysiol. 59: 19–40.

    PubMed  CAS  Google Scholar 

  • Suzuki DA, Noda H, Kase M (1981) Visual and pursuit eye movement-related activity in posterior vermis of monkey cerebellum. J. Neurophysiol. 46: 1120–1139.

    PubMed  CAS  Google Scholar 

  • Suzuki DA, Yamada T, Yee RD (2003) Smooth-pursuit eye-movement-related neuronal activity in macaque nucleus reticularis tegmenti pontis. J. Neurophysiol. 89: 2146–2158.

    PubMed  Google Scholar 

  • Takagi M, Zee DS, Tamargo RJ (2000) Effects of lesions of the oculomotor cerebellar vermis on eye movements in primate: smooth pursuit. J. Neurophysiol. 83: 2047–2062.

    PubMed  CAS  Google Scholar 

  • Tanaka M (2005) Involvement of the central thalamus in the control of smooth pursuit eye movements. J. Neurosci. 25: 5866–5876.

    PubMed  CAS  Google Scholar 

  • Thier P, Andersen RA (1996) Electrical microstimulation suggests two different forms of representation of head-centered space in the intraparietal sulcus of rhesus monkeys. Proc. Natl. Acad. Sci. USA 93: 4962–4967.

    PubMed  CAS  Google Scholar 

  • Thier P, Andersen RA (1998) Electrical microstimulation distinguishes distinct saccade-related areas in the posterior parietal cortex. J. Neurophysiol. 80: 1713–1735.

    PubMed  CAS  Google Scholar 

  • Thier P, Koehler W, Buettner UW (1988) Neuronal activity in the dorsolateral pontine nucleus of the alert monkey modulated by visual stimuli and eye movements. Exp. Brain Res. 70: 496–512.

    PubMed  CAS  Google Scholar 

  • Thurston SE, Leigh RJ, Crawford T, Thompson A, Kennard C (1988) Two distinct deficits of visual tracking caused by unilateral lesions of cerebral cortex in humans. Ann. Neurol. 23: 266–273.

    PubMed  CAS  Google Scholar 

  • Tian J, Schlag J, Schlag-Rey M (2000) Testing quasi-visual neurons in the monkey’s frontal eye field with the triple-step paradigm. Exp. Brain Res. 130: 433–440.

    PubMed  CAS  Google Scholar 

  • Tobler PN, Felblinger J, Burki M, Nirkko AC, Ozdoba C, Muri RM (2001) Functional organisation of the saccadic reference system processing extraretinal signals in humans. Vision Res. 41: 1351–1358.

    PubMed  CAS  Google Scholar 

  • Tusa RJ, Ungerleider LG (1988) Fiber pathways of cortical areas mediating smooth pursuit eye movements in monkeys. Ann. Neurol. 23: 174–183.

    PubMed  CAS  Google Scholar 

  • Ungerleider LG, Desimone R (1986) Cortical connections of visual area MT in the macaque. J. Comp. Neurol. 248: 190–222.

    PubMed  CAS  Google Scholar 

  • Van Essen DC, Maunsell JH, Bixby JL (1981) The middle temporal visual area in the macaque: myeloarchitecture, connections, functional properties and topographic organization. J. Comp. Neurol. 199: 293–326.

    PubMed  CAS  Google Scholar 

  • Van Gisbergen JA, Robinson DA, Gielen S (1981) A quantitative analysis of generation of saccadic eye movements by burst neurons. J. Neurophysiol. 45: 417–442.

    PubMed  CAS  Google Scholar 

  • Wang XJ (2001) Synaptic reverberation underlying mnemonic persistent activity. Trends Neurosci. 24: 455–463.

    PubMed  CAS  Google Scholar 

  • Weir CR, Knox PC, Dutton GN (2000) Does extraocular muscle proprioception influence oculomotor control? Br. J. Ophthalmol. 84: 1071–1074.

    PubMed  CAS  Google Scholar 

  • Wolpert DM, Miall RC, Kawato M (1998) Internal models in the cerebellum. Trends Cogn. Sci. 2: 338–347.

    Google Scholar 

  • Zhang T, Heuer HW, Britten KH (2004) Parietal area VIP neuronal responses to heading stimuli are encoded in head-centered coordinates. Neuron. 42: 993–1001.

    PubMed  CAS  Google Scholar 

  • Zivotofsky AZ, Rottach KG, Averbuch-Heller L, Kori AA, Thomas CW, Dell’Osso LF, Leigh RJ (1996) Saccades to remembered targets: the effects of smooth pursuit and illusory stimulus motion. J. Neurophysiol. 76: 3617–3632.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunnar Blohm.

Additional information

Action Editor: Jonathan D. Victor

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blohm, G., Optican, L.M. & Lefèvre, P. A model that integrates eye velocity commands to keep track of smooth eye displacements. J Comput Neurosci 21, 51–70 (2006). https://doi.org/10.1007/s10827-006-7199-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-006-7199-6

Keywords

Navigation