Skip to main content

Advertisement

Log in

A model for synaptic development regulated by NMDA receptor subunit expression

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Activation of NMDA receptors (NMDARs) is highly involved in the potentiation and depression of synaptic transmission. NMDARs comprise NR1 and NR2B subunits in the neonatal forebrain, while the expression of NR2A subunit is increased over time, leading to shortening of NMDAR-mediated synaptic currents. It has been suggested that the developmental switch in the NMDAR subunit composition regulates synaptic plasticity, but its physiological role remains unclear. In this study, we examine the effects of the NMDAR subunit switch on the spike-timing-dependent plasticity and the synaptic weight dynamics and demonstrate that the subunit switch contributes to inducing two consecutive processes—the potentiation of weak synapses and the induction of the competition between them—at an adequately rapid rate. Regulation of NMDAR subunit expression can be considered as a mechanism that promotes rapid and stable growth of immature synapses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abarbanel, H. D. I., Gibb, L., Huerta, R., & Rabinovich, M. I. (2003). Biophysical model of synaptic plasticity dynamics. Biological Cybernetics, 89, 214–226.

    PubMed  Google Scholar 

  • Abbott, L. F., & Nelson, S. B. (2000). Synaptic plasticity: Taming the beast. Nature Neuroscience, 3(Suppl), 1178–1183.

    PubMed  CAS  Google Scholar 

  • Ahmed, B., Anderson, J. C., Douglas, R. J., Martin, K. A. C., & Whitteridge, D. (1998). Estimates of the net excitatory currents evoked by visual stimulation of identified neurons in cat visual cortex. Cerebral Cortex, 8, 462–476.

    PubMed  CAS  Google Scholar 

  • Artola, A., & Singer, W. (1993). Long-term depression of excitatory synaptic transmission and its relationship to long-term potentiation. Trends in Neurosciences, 16, 480–487.

    PubMed  CAS  Google Scholar 

  • Bear M. F., Cooper L. N., & Ebner F. F. (1987). A physiological basis for a theory of synapse modification. Science, 237, 42–48.

    PubMed  CAS  Google Scholar 

  • Berberich, S., Punnakkal, P., Jensen, V., Pawlak, V., Seeburg, P. H., Hvalby, O., et al. (2005). Lack of NMDA receptor subtype selectivity for hippocampal long-term potentiation. Journal of Neuroscience, 25, 6907–6910.

    PubMed  CAS  Google Scholar 

  • Bernander, O., Douglas, R. J., Martin, K. A. C., & Koch, C. (1991). Synaptic background activity influences spatiotemporal integration in single pyramidal cells. Proceedings of the National Academy of Sciences of the United States of America, 88, 11569–11573.

    PubMed  CAS  Google Scholar 

  • Bhalla, U. S., & Iyengar, R. (1999). Emergent properties of networks of biological signaling pathways. Science, 283, 381–387.

    PubMed  CAS  Google Scholar 

  • Bi, G. Q., & Poo, M. M. (1998). Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type. Journal of Neuroscience, 18, 10464–10472.

    PubMed  CAS  Google Scholar 

  • Bi, G. Q., & Rubin, J. (2005). Timing in synaptic plasticity: From detection to integration. Trends in Neurosciences, 28, 222–228.

    PubMed  CAS  Google Scholar 

  • Blitzer, R. D., Connor, J. H., Brown, G. P., Wong, T., Shenolikar, S., & Iyengar, R., et al. (1998). Gating of CaMKII by cAMP-regulated protein phosphatase activity during LTP. Science, 280, 1940–1943.

    PubMed  CAS  Google Scholar 

  • Bush, P. C., & Sejnowski, T. J. (1993). Reduced compartmental models of neocortical pyramidal cells. Journal of Neuroscience Methods, 46, 159–166.

    PubMed  CAS  Google Scholar 

  • Callaway, J. C., & Ross, W. N. (1995). Frequency-dependent propagation of sodium action potentials in dendrites of hippocampal CA1 pyramidal neurons. Journal of Neurophysiology, 74, 1395–1403.

    PubMed  CAS  Google Scholar 

  • Carmignoto, G., & Vicini, S. (1992). Activity-dependent decrease in NMDA receptor responses during development of the visual cortex. Science, 258, 1007–1011.

    PubMed  CAS  Google Scholar 

  • Cavazzini, M., Bliss, T., & Emptage, N. (2005). Ca2+ and synaptic plasticity. Cell Calcium, 38, 355–367.

    PubMed  CAS  Google Scholar 

  • Crair, M. C., & Malenka, R. C. (1995). A critical period for long-term potentiation at thalamocortical synapses. Nature, 375, 325–328.

    PubMed  CAS  Google Scholar 

  • Daw, N. W., Gordon, B., Fox, K. D., Flavin, H. J., Kirsch, J. D., Beaver, C. J., et al. (1999). Injection of MK-801 affects ocular dominance shifts more than visual activity. Journal of Neurophysiology, 81, 204–215.

    PubMed  CAS  Google Scholar 

  • Debanne, D., Gähwiler, B. H., & Thompson, S. M. (1998). Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures. Journal of Physiology (London), 507.1, 237–247.

    Google Scholar 

  • Dumas, T. C. (2005). Developmental regulation of cognitive abilities: Modified composition of a molecular switch turns on associative learning. Progress in Neurobiology, 76, 189–211.

    PubMed  CAS  Google Scholar 

  • Erreger, K., Dravid, S. M., Banke, T. G., Wyllie, D. J. A., & Traynelis, S. F. (2005). Subunit-specific gating controls rat NR1/NR2A and NR1/NR2B NMDA channel kinetics and synaptic signalling profiles. Journal of Physiology (London), 563.2, 345–358.

    Google Scholar 

  • Fagiolini, M., Pizzorusso, T., Berardi, N., Domenici, L., & Maffei, L. (1994). Functional postnatal development of the rat primary visual cortex and the role of visual experience: Dark rearing and monocular deprivation. Vision Research, 34, 709–720.

    PubMed  CAS  Google Scholar 

  • Feldman, D. E. (2000). Timing-based LTP and LTD at vertical inputs to layer II/III pyramidal cells in rat barrel cortex. Neuron, 27, 45–56.

    PubMed  CAS  Google Scholar 

  • Feldman, D. E., Nicoll, R. A., Malenka, R. C., & Isaac, J. T. R. (1998). Long-term depression at thalamocortical synapses in developing rat somatosensory cortex. Neuron, 21, 347–357.

    PubMed  CAS  Google Scholar 

  • Flint, A. C., Maisch, U. S., Weishaupt, J. H., Kriegstein, A. R., & Monyer, H. (1997). NR2A subunit expression shortens NMDA receptor synaptic currents in developing neocortex. Journal of Neuroscience, 17, 2469–2476.

    PubMed  CAS  Google Scholar 

  • Froemke, R. C., Poo, M. M., & Dan, Y. (2005). Spike-timing-dependent synaptic plasticity depends on dendritic location. Nature, 434, 221–225.

    PubMed  CAS  Google Scholar 

  • Gerstner, W., & Kistler, W. M. (2002). Spiking neuron models: Single neurons, populations, plasticity. Cambridge: Cambridge University Press.

    Google Scholar 

  • Goodman, C. S., & Shatz, C. J. (1993). Developmental mechanisms that generate precise patterns of neuronal connectivity. Cell 72 / Neuron, 10(Suppl.), 77–98.

    Google Scholar 

  • Harris, K. M., Jansen, F. E., & Tsao, B. (1992). Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: Implications for the maturation of synaptic physiology and long-term potentiation. Journal of Neuroscience, 12, 2685–2705.

    PubMed  CAS  Google Scholar 

  • Helmchen, F., Imoto, K., & Sakmann, B. (1996). Ca2+ buffering and action potential-evoked Ca2+ signaling in dendrites of pyramidal neurons. Biophysical Journal, 70, 1069–1081.

    PubMed  CAS  Google Scholar 

  • Hessler, N. A., Shirke, A. M., & Mallnow, R. (1993). The probability of transmitter release at a mammalian central synapse. Nature, 366, 569–572.

    PubMed  CAS  Google Scholar 

  • Holmes. (2000). Models of calmodulin trapping and CaM kinase II activation in a dendritic spine. Journal of Computational Neuroscience, 8, 65–85.

    PubMed  CAS  Google Scholar 

  • Huh, K. H., & Wenthold, R. J. (1999). Turnover analysis of glutamate receptors identifies a rapidly degraded pool of the N-Methyl-D-aspartate receptor subunit, NR1, in cultured cerebellar granule cells. Journal of Biological Chemistry, 274, 151–157.

    PubMed  CAS  Google Scholar 

  • Iannella, N., & Tanaka, S. (2006). Synaptic efficacy cluster formation across the dendrite via STDP. Neuroscience Letters, 403, 24–29.

    PubMed  CAS  Google Scholar 

  • Issac, J. T. R., Crair, M. C., Nicoll, R. A., & Malenka, R. C. (1997). Silent synapses during development of thalamocortical inputs. Neuron, 18, 269–280.

    Google Scholar 

  • Jahr, C. E., & Stevens, C. F. (1990a). Quantitative description of NMDA receptor-channel kinetic behavior. Journal of Neuroscience, 10, 1830–1837.

    PubMed  CAS  Google Scholar 

  • Jahr, C. E., & Stevens, C. F. (1990b). Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics. Journal of Neuroscience, 10, 3178–3182.

    PubMed  CAS  Google Scholar 

  • Kaas, J. H. (1997). Topographic maps are fundamental to sensory processing. Brain Research Bulletin, 44, 107–112.

    PubMed  CAS  Google Scholar 

  • Karmarkar, U. R., & Buonomano, D. V. (2002). A model of spike-timing dependent plasticity: One or two coincidence detectors? Journal of Neurophysiology, 88, 507–513.

    PubMed  Google Scholar 

  • Karmarkar, U. R., Najarian, M. T., & Buonomano, D. V. (2002). Mechanisms and significance of spike-timing dependent plasticity. Biological Cybernetics, 87, 373–382.

    PubMed  Google Scholar 

  • Kato, N., & Yoshimura, H. (1993). Reduced Mg2+ block of N-methyl-D-aspartate receptor-mediated synaptic potentials in developing visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 90, 7114–7118.

    PubMed  CAS  Google Scholar 

  • Katz, L. C., & Shatz, C. J. (1996). Synaptic activity and the construction of cortical circuits. Science, 274, 1133–1138.

    PubMed  CAS  Google Scholar 

  • Kepecs, A., van Rossum, M. C. W., Song, S., & Tegner, J. (2002). Spike-timing-dependent plasticity: Common themes and divergent vistas. Biological Cybernetics, 87, 446–458.

    PubMed  Google Scholar 

  • Kirson, E. D., Schirra, C., Konnerth, A., & Yaari, Y. (1999). Early postnatal switch in magnesium sensitivity of NMDA receptors in rat CA1 pyramidal cells. Journal of Physiology (London), 521.1, 99–111.

    Google Scholar 

  • Kitajima, T., & Hara, K. (2000). A generalized Hebbian rule for activity-dependent synaptic modifications. Neural Networks, 13, 445–454.

    PubMed  CAS  Google Scholar 

  • Koch, C. (1999). Biophysics of computation. Information processing in single neurons. New York: Oxford University Press.

    Google Scholar 

  • Kovalchuk, Y., Eilers, J., Lisman, J., & Konnerth, A. (2000). NMDA receptor-mediated subthreshold Ca2+ signals in spines of hippocampal neurons. Journal of Neuroscience, 20, 1791–1799.

    PubMed  CAS  Google Scholar 

  • Krupp, J. J., Vissel, B., Heinemann, S. F., & Westbrook, G. L. (1996). Calcium-dependent inactivation of recombinant N-methyl-D-aspartate receptors is NR2 subunit specific. Molecular Pharmacology, 50, 1680–1688.

    PubMed  CAS  Google Scholar 

  • Kuner, T., & Schoepfer, R. (1996). Multiple structural elements determine subunit specificity of Mg2+ block in NMDA receptor channels. Journal of Neuroscience, 16, 3549–3558.

    PubMed  CAS  Google Scholar 

  • Lancaster, B., & Zucker, R. S. (1994). Photolytic manipulation of Ca2+ and the time course of slow, Ca2+-activated K+ current in rat hippocampal neurons. Journal of Physiology (London), 475.2, 229–239.

    Google Scholar 

  • Lisman, J. (1989). A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. Proceedings of the National Academy of Sciences of the United States of America, 86, 9574–9578.

    PubMed  CAS  Google Scholar 

  • Lisman, J. (1994). The CaM kinase II hypothesis for the storage of synaptic memory. Trends in Neurosciences, 17, 406–412.

    PubMed  CAS  Google Scholar 

  • Lisman, J. E., & Zhabotinsky, A. M. (2001). A model of synaptic memory: A CaMKII/PP1 switch that potentiates transmission by organizing an AMPA receptor anchoring assembly. Neuron, 31, 191–201.

    PubMed  CAS  Google Scholar 

  • Liu, L., Wong, T. P., Pozza, M. F., Lingenhoehl, K., Wang, Y., Sheng, M., et al. (2004). Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science, 304, 1021–1024.

    PubMed  CAS  Google Scholar 

  • Liu, Y. H., & Wang, X. J. (2001). Spike-frequency adaptation of a generalized leaky integrate-and-fire model neuron. Journal of Computational Neuroscience, 10, 25–45.

    PubMed  CAS  Google Scholar 

  • Llinas, R. R. (1988). The intrinsic electrophysiological properties of mammalian neurons: Insights into central nervous system function. Science, 242, 1654–1664.

    PubMed  CAS  Google Scholar 

  • Lu, H. C., Gonzalez, E., & Crair, M. C. (2001). Barrel cortex critical period plasticity is independent of changes in NMDA receptor subunit composition. Neuron, 32, 619–634.

    PubMed  Google Scholar 

  • Mainen, Z. F., & Sejnowski, T. J. (1996). Influence of dendritic structure on firing pattern in model neocortical neurons. Nature, 382, 363–366.

    PubMed  CAS  Google Scholar 

  • Markram, H., Lubke, J., Frotscher, M., & Sakmann, B. (1997). Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science, 275, 213–215.

    PubMed  CAS  Google Scholar 

  • Massey, P. V., Johnson, B. E., Moult, P. R., Auberson, Y. P., Brown, M. W., Molnar, E., et al. (2004). Differential roles of NR2A and NR2B-containing NMDA receptors in cortical long-term potentiation and long-term depression. Journal of Neuroscience, 24, 7821–7828.

    PubMed  CAS  Google Scholar 

  • McCormick, D. A., Connors, B. W., Lighthall, J. W., & Prince, D. A. (1985). Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. Journal of Neurophysiology, 54, 782–806.

    PubMed  CAS  Google Scholar 

  • McHugh, T. J., Blum, K. I., Tsien, J. Z., Tonegawa, S., & Wilson, M. A. (1996). Impaired hippocampal representation of space in CA1-specific NMDAR1 knockout mice. Cell, 87, 1339–1349.

    PubMed  CAS  Google Scholar 

  • Micheva, K. D., & Beaulieu, C. (1996). Quantitative aspects of synaptogenesis in the rat barrel field cortex with special reference to GABA circuitry. Journal of Comparative Neurology, 373, 340–354.

    PubMed  CAS  Google Scholar 

  • Mierau, S. B., Meredith, R. M., Upton, A. L., & Paulsen, O. (2004). Dissociation of experience-dependent and -independent changes in excitatory synaptic transmission during development of barrel cortex. Proceedings of the National Academy of Sciences of the United States of America, 101, 15518–15523.

    PubMed  CAS  Google Scholar 

  • Mizuno, T., Kanazawa, I., & Sakurai, M. (2001). Differential induction of LTP and LTD is not determined solely by instantaneous calcium concentration: An essential involvement of a temporal factor. European Journal of Neuroscience, 14, 701–708.

    PubMed  CAS  Google Scholar 

  • Monyer, H., Burnashev, N., Laurie, D. J., Sakmann, B., & Seeburg, P. H. (1994). Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron, 12, 529–540.

    PubMed  CAS  Google Scholar 

  • Morishita, W., Lu, W., Smith, G. B., Nicoll, R. A., Bear, M. F., & Malenka, R. C. (2007). Activation of NR2B-containing NMDA receptors is not required for NMDA receptor-dependent long-term depression. Neuropharmacology, 52, 71–76.

    PubMed  CAS  Google Scholar 

  • Nishiyama, M., Hong, K., Mikoshiba, K., Poo, M. M., & Kato, K. (2000). Calcium stores regulate the polarity and input specificity of synaptic modification. Nature, 408, 584–588.

    PubMed  CAS  Google Scholar 

  • Philpot, B. D., Sekhar, A. K., Shouval, H. Z., & Bear, M. F. (2001). Visual experience and deprivation bidirectionally modify the composition and function of NMDA receptors in visual cortex. Neuron, 29, 157–169.

    PubMed  CAS  Google Scholar 

  • Piascik, M. T., Wisler, P. L., Johnson, C. L., & Potter, J. D. (1980). Ca2+-dependent regulation of guinea pig brain adenylate cyclase. Journal of Biological Chemistry, 255, 4176–4181.

    PubMed  CAS  Google Scholar 

  • Press, W. H., Flannery, B. P., Teukolsky, S. A., & Vetterling, W. T. (1988). Numerical recipes in C. Cambridge: Cambridge University Press.

    Google Scholar 

  • Prybylowski, K., Fu, Z., Losi, G., Hawkins, L. M., Luo, J., Chang, K., et al. (2002). Relationship between availability of NMDA receptor subunits and their expression at the synapse. Journal of Neuroscience, 22, 8902–8910.

    PubMed  CAS  Google Scholar 

  • Puyal, J., Grassi, S., Dieni, C., Frondaroli, A., Demêmes, D., Raymond, J., et al. (2003). Developmental shift from long-term depression to long-term potentiation in the rat medial vestibular nuclei: Role of group I metabotropic glutamate receptors. Journal of Physiology (London), 553.2, 427–443.

    Google Scholar 

  • Quinlan, E. M., Olstein, D. H., & Bear, M. F. (1999a). Bidirectional, experience-dependent regulation of N-methyl-D-aspartate receptor subunit composition in the rat visual cortex during postnatal development. Proceedings of the National Academy of Sciences of the United States of America, 96, 12876–12880.

    PubMed  CAS  Google Scholar 

  • Quinlan, E. M., Philpot, B. D., Huganir, R. L., & Bear, M. F. (1999b). Rapid, experience-dependent expression of synaptic NMDA receptors in visual cortex in vivo. Nature Neuroscience, 2, 352–357.

    PubMed  CAS  Google Scholar 

  • Rema, V., Armstrong-James, M., & Ebner, F. F. (1998). Experience-dependent plasticity of adult rat S1 cortex requires local NMDA receptor activation. Journal of Neuroscience, 18, 10196–10206.

    PubMed  CAS  Google Scholar 

  • Risken, H. (1989). The Fokker–Planck equation: Methods of solution and applications (2nd edn.). Berlin: Springer.

    Google Scholar 

  • Rosenmund, C., Feltz, A., & Westbrook, G. L. (1995). Calcium-dependent inactivation of synaptic NMDA receptors in hippocampal neurons. Journal of Neurophysiology, 73, 427–430.

    PubMed  CAS  Google Scholar 

  • Rubin, J., Lee, D. D., & Sompolinsky, H. (2001). Equilibrium properties of temporally asymmetric Hebbian plasticity. Physical Review Letters, 86, 364–367.

    PubMed  CAS  Google Scholar 

  • Rubin, J. E., Gerkin, R. C., Bi, G. Q., & Chow, C. C. (2005). Calcium time course as a signal for spike-timing-dependent plasticity. Journal of Neurophysiology, 93, 2600–2613.

    PubMed  Google Scholar 

  • Rumsey, C. C., & Abbott, L. F. (2006). Synaptic democracy in active dendrites. Journal of Neurophysiology, 96, 2307–2318.

    PubMed  Google Scholar 

  • Sabatini, B. L., Maravall, M., & Svoboda, K. (2001). Ca2+ signaling in dendritic spines. Current Opinion in Neurobiology, 11, 349–356.

    PubMed  CAS  Google Scholar 

  • Sabatini, B. L., Oertner, T. G., & Svoboda, K. (2002). The life cycle of Ca2+ ions in dendritic spines. Neuron, 33, 439–452.

    PubMed  CAS  Google Scholar 

  • Sah, P., & Bekkers, J. M. (1996). Apical dendritic location of slow afterhyperpolarization current in hippocampal pyramidal neurons: Implications for the integration of long-term potentiation. Journal of Neuroscience, 16, 4537–4542.

    PubMed  CAS  Google Scholar 

  • Sakimura, K., Kutsuwada, T., Ito, I., Manabe, T., Takayama, C., Kushiya, E., et al. (1995). Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor ɛ1 subunit. Nature, 373, 151–155.

    PubMed  CAS  Google Scholar 

  • Sans, N. A., Montcouquiol, M. E., & Raymond, J. (2000). Postnatal developmental changes in AMPA and NMDA receptors in the rat vestibular nuclei. Developmental Brain Research, 123, 41–52.

    PubMed  CAS  Google Scholar 

  • Schiller, J., Helmchen, F., & Sakmann, B. (1995). Spatial profile of dendritic calcium transients evoked by action potentials in rat neocortical pyramidal neurons. Journal of Physiology (London), 487, 583–600.

    CAS  Google Scholar 

  • Schneggenburger, R. (1996). Simultaneous measurement of Ca2+ influx and reversal potentials in recombinant N-methyl-D-aspartate receptor channels. Biophysical Journal, 70, 2165–2174.

    PubMed  CAS  Google Scholar 

  • Schneggenburger, R., Zhou, Z., Konnerth, A., & Neher, E. (1993). Fractional contribution of calcium to the cation current through glutamate receptor channels. Neuron, 11, 133–143.

    PubMed  CAS  Google Scholar 

  • Sheng, M., Cummings, J., Roldan, L. A., Jan, Y. N., & Jan, L. Y. (1994). Changing subunit composition of heteromeric NMDA receptors during development of rat cortex. Nature, 368, 144–147.

    PubMed  CAS  Google Scholar 

  • Shi, J., Aamodt, S. M., & Constantine-Paton, M. (1997). Temporal correlations between functional and molecular changes in NMDA receptors and GABA neurotransmission in the superior colliculus. Journal of Neuroscience, 17, 6264–6276.

    PubMed  CAS  Google Scholar 

  • Shouval, H. Z., Bear, M. F., & Cooper, L. N. (2002). A unified model of NMDA receptor-dependent bidirectional synaptic plasticity. Proceedings of the National Academy of Sciences of the United States of America, 99, 10831–10836.

    PubMed  CAS  Google Scholar 

  • Shouval, H. Z., & Kalantzis, G. (2005). Stochastic properties of synaptic transmission affect the shape of spike time-dependent plasticity curves. Journal of Neurophysiology, 93, 1069–1073.

    PubMed  Google Scholar 

  • Simons, D. J. (1978). Response properties of vibrissa units in rat SI somatosensory neocortex. Journal of Neurophysiology, 41, 798–820.

    PubMed  CAS  Google Scholar 

  • Simons, D. J., & Carvell, G. E. (1989). Thalamocortical response transformation in the rat vibrissa/barrel system. Journal of Neurophysiology, 61, 311–330.

    PubMed  CAS  Google Scholar 

  • Song, S., & Abbott, L. F. (2001). Cortical development and remapping through spike timing-dependent plasticity. Neuron, 32, 339–350.

    PubMed  CAS  Google Scholar 

  • Song, S., Miller, K. D., & Abbott, L. F. (2000). Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nature Neuroscience, 3, 919–926.

    PubMed  CAS  Google Scholar 

  • Steigerwald, F., Schulz, T. W., Schenker, L. T., Kennedy, M. B., Seeburg, P. H., & Köhr, G. (2000). C-terminal truncation of NR2A subunits impairs synaptic but not extrasynaptic localization of NMDA receptors. Journal of Neuroscience, 20, 4573–4581.

    PubMed  CAS  Google Scholar 

  • Stephenson, F. A. (2001). Subunit characterization of NMDA receptors. Current Drug Targets, 2, 233–239.

    PubMed  CAS  Google Scholar 

  • Stern, E. A., Maravall, M., & Svoboda, K. (2001). Rapid development and plasticity of layer 2/3 maps in rat barrel cortex in vivo. Neuron, 31, 305–315.

    PubMed  CAS  Google Scholar 

  • Svoboda, K., Denk, W., Kleinfeld, D., & Tank, D. W. (1997). In vivo dendritic calcium dynamics in neocortical pyramidal neurons. Nature, 385, 161–165.

    PubMed  CAS  Google Scholar 

  • Tang, Y. P., Shimizu, E., Dube, G. R., Rampon, C., Kerchner, G. A., Zhuo, M., et al. (1999). Genetic enhancement of learning and memory in mice. Nature, 401, 63–69.

    PubMed  CAS  Google Scholar 

  • Tateno, T., Harsch, A., & Robinson, H. P. C. (2004). Threshold firing frequency-current relationships of neurons in rat somatosensory cortex: Type 1 and type 2 dynamics. Journal of Neurophysiology, 92, 2283–2294.

    PubMed  CAS  Google Scholar 

  • Tegner, J., & Kepecs, A. (2002). Why neuronal dynamics should control synaptic learning rules. In T. G. Dietterich, S. Becker, & Z. Ghahramani (Eds.), Advances in Neural Information Processing Systems 14. Cambridge: MIT Press.

    Google Scholar 

  • Togashi, K., Kitajima, T., Aihara, T., Hong, K., Poo, M., & Nishiyama, M. (2003). Gating of activity-dependent long-term depression by GABAergic activity in the hippocampus. Society for Neuroscience, 123.4(Abstract).

  • Troyer, T. W., & Miller, K. D. (1997). Physiological gain leads to high ISI variability in a simple model of a cortical regular spiking cell. Neural Computation, 9, 971–983.

    PubMed  CAS  Google Scholar 

  • Umemiya, M., Chen, N., Raymond, L. A., & Murphy, T. H. (2001). A calcium-dependent feedback mechanism participates in shaping single NMDA miniature EPSCs. Journal of Neuroscience, 21, 1–9.

    PubMed  CAS  Google Scholar 

  • Van Rossum, M. C. W., Bi, G. Q., & Turrigiano, G. G. (2000). Stable Hebbian learning from spike timing-dependent plasticity. Journal of Neuroscience, 20, 8812–8821.

    PubMed  Google Scholar 

  • Vicini, S., Wang, J. F., Li, J. H., Zhu, W. J., Wang, Y. H., Luo, J. H., et al. (1998). Functional and pharmacological differences between recombinant N-methyl-D-aspartate receptors. Journal of Neurophysiology, 79, 555–566.

    PubMed  CAS  Google Scholar 

  • Wang, H. X., Gerkin, R. C., Nauen, D. W., & Bi, G. Q. (2005). Coactivation and timing-dependent integration of synaptic potentiation and depression. Nature Neuroscience, 8, 187–193.

    PubMed  CAS  Google Scholar 

  • Xia, Z., & Storm, D. R. (2005). The role of calmodulin as a signal integrator for synaptic plasticity. Nature Reviews. Neuroscience, 6, 267–276.

    PubMed  CAS  Google Scholar 

  • Yang, S. N., Tang, Y. G., & Zucker, R. S. (1999). Selective induction of LTP and LTD by postsynaptic [Ca2+]i elevation. Journal of Neurophysiology, 81, 781–787.

    PubMed  CAS  Google Scholar 

  • Zador, A., Koch, C., & Brown, T. H. (1990). Biophysical model of a Hebbian synapse. Proceedings of the National Academy of Sciences of the United States of America, 87, 6718–6722.

    PubMed  CAS  Google Scholar 

  • Zhabotinsky. (2000). Bistability in the Ca2+/calmodulin-dependent protein kinase-phosphatase system. Biophysical Journal, 79, 2211–2221.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, L. I., Tao, H. W., Holt, C. E., Harris, W. A., & Poo, M. M. (1998). A critical window for cooperation and competition among developing retinotectal synapses. Nature, 395, 37–44.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This study is partially supported by the Grant-in-Aid for Scientific Research (KAKENHI (19700281), Young Scientists (B)) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeru Kubota.

Additional information

Action Editor: Upinder Bhalla

Appendix A: Derivation of Eqs. (13–15)

Appendix A: Derivation of Eqs. (1315)

As shown in van Rossum et al. (2000), synaptic weight distribution P(w) obeys

$$\frac{1}{{f_{{{\text{pre}}}} }}\frac{{\partial P{\left( {w,t} \right)}}}{{\partial t}} = - \frac{\partial }{{\partial w}}{\left[ {r_{1} {\left( w \right)}P{\left( {w,t} \right)}} \right]} + \frac{1}{2}\frac{{\partial ^{2} }}{{\partial w^{2} }}{\left[ {r_{2} {\left( w \right)}P{\left( {w,t} \right)}} \right]},$$
(16)
$$r_{1} {\left( w \right)} = A_{ + } p_{p} - A_{ - } p_{d} ,$$
(17)
$$r_{2} {\left( w \right)} = A_{ + } ^{2} p_{p} + A_{ - } ^{2} p_{d} ,$$
(18)

where p p and p d denote the probability that LTP and LTD occur by the presynaptic event, respectively. By the same assumptions as van Rossum et al., we obtain the following relations: p d  = f post t and p p  = p d (t +/t )(1 + w/W tot). If we substitute these equations into Eqs. (17) and (18), and set A(w) = r 1(w)/f post and B(w) = r 2(w)/f post, then Eqs. (1618) can be rewritten as Eqs. (1315).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kubota, S., Kitajima, T. A model for synaptic development regulated by NMDA receptor subunit expression. J Comput Neurosci 24, 1–20 (2008). https://doi.org/10.1007/s10827-007-0036-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-007-0036-8

Keywords

Navigation