Skip to main content

Advertisement

Log in

Antidromic propagation of action potentials in branched axons: implications for the mechanisms of action of deep brain stimulation

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Electrical stimulation of the central nervous system creates both orthodromically propagating action potentials, by stimulation of local cells and passing axons, and antidromically propagating action potentials, by stimulation of presynaptic axons and terminals. Our aim was to understand how antidromic action potentials navigate through complex arborizations, such as those of thalamic and basal ganglia afferents—sites of electrical activation during deep brain stimulation. We developed computational models to study the propagation of antidromic action potentials past the bifurcation in branched axons. In both unmyelinated and myelinated branched axons, when the diameters of each axon branch remained under a specific threshold (set by the antidromic geometric ratio), antidromic propagation occurred robustly; action potentials traveled both antidromically into the primary segment as well as “re-orthodromically” into the terminal secondary segment. Propagation occurred across a broad range of stimulation frequencies, axon segment geometries, and concentrations of extracellular potassium, but was strongly dependent on the geometry of the node of Ranvier at the axonal bifurcation. Thus, antidromic activation of axon terminals can, through axon collaterals, lead to widespread activation or inhibition of targets remote from the site of stimulation. These effects should be included when interpreting the results of functional imaging or evoked potential studies on the mechanisms of action of DBS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Model code available at http://senselab.med.yale.edu/senselab/modeldb/ShowModel.asp?model=3810.

References

  • Anderson, T. R., Hu, B., Iremonger, K., & Kiss, Z. H. (2006). Selective attenuation of afferent synaptic transmission as a mechanism of thalamic deep brain stimulation-induced tremor arrest. Journal of Neuroscience, 26, 841–850.

    Article  PubMed  CAS  Google Scholar 

  • Asanuma, K., Tang, C., Ma, Y., Dhawan, V., Mattis, P., Edwards, C., et al. (2006). Network modulation in the treatment of Parkinson’s disease. Brain, 129, 2667–2678.

    Article  PubMed  Google Scholar 

  • Ashby, P., & Rothwell, J. C. (2000). Neurophsysiologic aspects of deep brain stimulation. Neurology, 55(Suppl 6), S17–S20.

    PubMed  CAS  Google Scholar 

  • Ashby, P., Paradiso, G., Saint-Cyr, J. A., Chen, R., Lang, A. E., & Lozano, A. M. (2001). Potentials recorded at the scalp by stimulation near the human subthalamic nucleus. Clinical Neurophysiology, 112, 431–437.

    Article  PubMed  CAS  Google Scholar 

  • Baker, K. B., Montgomery, E. B. Jr., Rezai, A. R., Burgess, R., & Luders, H. O. (2002). Subthalamic nucleus deep brain stimulus evoked potentials: Physiological and therapeutic implications. Movement Disorders, 17, 969–983.

    Article  PubMed  Google Scholar 

  • Baldissera, F., Lundberg, A., & Udo, M. (1972) Stimulation of pre- and postsynaptic elements in the red nucleus. Experimental Brain Research, 15, 151–167.

    CAS  Google Scholar 

  • Barron, D. H., & Matthews, B. H. C. (1935). Intermittent conduction in the spinal cord. Journal of Physiology (London), 85, 73–103.

    CAS  Google Scholar 

  • Benazzouz, A., Piallat, B., Pollak, P., & Benabid, A. L. (1995). Responses of substantia nigra pars reticulata and globus pallidus complex to high frequency stimulation of the subthalamic nucleus in rats: Electrophysiological data. Neuroscience Letter, 189, 77–80.

    Article  CAS  Google Scholar 

  • Biedenbach, M. A., De Vito, J. L., & Brown, A. C. (1986). Pyramidal tract of the cat: Axon size and morphology. Experimental Brain Research, 61(2), 303–310.

    Article  CAS  Google Scholar 

  • Butovas, S., & Schwarz, C. (2003). Spatiotemporal effects of microstimulation in rat neocortex: A parametric study using multielectrode recordings. Journal of Neurophysiology, 90, 3024–3039.

    Article  PubMed  Google Scholar 

  • Ceballos-Baumann, A. O., Boecker, H., Bartenstein, P., von Falkenhayn, I., Riescher, H., Conrad, B., et al. (1999). A positron emission tomographic study of subthalamic nucleus stimulation in Parkinson disease: Enhanced movement-related activity of motor-association cortex and decreased motor cortex resting activity. Archives of Neurology, 56(8), 997–1003.

    Article  PubMed  CAS  Google Scholar 

  • Chung, S. H., Raymond, S. A., & Lettivin, J. Y. (1970). Multiple meaning in single visual units. Brain, Behavior and Evolution, 3, 72–101.

    Article  PubMed  CAS  Google Scholar 

  • Coleman, G. T., Mahns, D. A., Zhang, H. Q., & Rowe, M. J. (2003). Impulse propagation over tactile and kinaesthetic sensory axons to central target neurons of the cunaeate nucleus in the cat. Journal of Physiology, 550, 553–562.

    Article  PubMed  CAS  Google Scholar 

  • Deibner, M. P., Pollack, P., Passingham, R., et al. (1993). Thalamic stimulation and suppression of tremor: Evidence of a cerebellar deactivation using PET. Brain, 116, 267–279.

    Article  Google Scholar 

  • Deschenes, M., & Landry, P. (1980). Axonal branch diameter and spacing of nodes in the terminal arborization of identified thalamic and cortical neurons. Brain Research, 191(2), 538–544.

    Article  PubMed  CAS  Google Scholar 

  • Dostrovsky, J. O., & Lozano, A. M. (2002). Mechanisms of deep brain stimulation. Movement Disorders, 17(Suppl. 3), S63–S68.

    Article  PubMed  Google Scholar 

  • Dostrovsky, J. O., Levy, R., Wu, J. P., Hutchison, W. D., Tasker, R. R., & Lozano, A. M. (2000). Microstimulation-induced inhibition of neuronal firing in human globus pallidus. Journal of Neurophysiology, 84, 570–574.

    PubMed  CAS  Google Scholar 

  • Engel, D. A., & Jonas, P. M. (2004). Presynaptic voltage-gated Na+ channels boost action potentials in hippocampal mossy fiber boutons. Program No. 397.4. Abstract Viewer/Itinerary Planner. Washington, DC: Society for Neuroscience.

    Google Scholar 

  • Filali, M., Hutchison, W. D., Palter, V. N., Lozano, A. M., & Dostrovsky, J. O. (2004). Stimulation-induced inhibition of neuronal firing in human subthalamic nucleus. Experimental Brain Research, 156, 274–281.

    Article  Google Scholar 

  • Frankenhaeuser, B., & Hodgkin, A. L. (1956). The after-effects of impulses in the giant nerve fibres of Loligo. Journal of Physiology (London), 131, 341–376.

    CAS  Google Scholar 

  • Gauthier, J., Parent, M., Levesque, M., & Parent, A. (1999). The axonal arborization of single nigrostriatal neurons in rats. Brain Research, 834(1–2), 228–232.

    Article  PubMed  CAS  Google Scholar 

  • Grafton, S. T., Turner, R. S., Desmurget, M., Bakay, R., Delong, M., Vitek, J., et al. (2006). Normalizing motor-related brain activity: Subthalamic nucleus stimulation in Parkinson disease. Neurology, 66(8), 1192–1199.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein, S. S., & Rall, W. (1974). Changes of action potential shape and velocity for changing core conductor geometry. Biophysical Journal, 14(10), 731–757.

    PubMed  CAS  Google Scholar 

  • Goldfinger, M. D. (1990). Random sequence stimulation of the G1 hair afferent unit. Somatosensory Motor Research, 7, 19–45.

    PubMed  CAS  Google Scholar 

  • Goldfinger, M. D. (2005). Highly efficient propagation of random impulse trains across unmyelinated axonal branch points: Modifications by periaxonal K+ accumulation and sodium channel kinetics. In Reeke GN, Poznanski RR, Lindsay KA, Rosenberg JR, Sporns O (eds.), Modeling in the Neurosciences, 2nd ed. (p. 479–530) Boca Raton, Florida: Taylor and Francis.

    Google Scholar 

  • Grill, W. M., & McIntyre, C. C. (2001). Extracellular excitation of central neurons: Implications for the mechanism of deep brain stimulation. Thalamus & Related Systems, 1, 269–277.

    Article  Google Scholar 

  • Grill, W. M., Snyder, A. N., & Miocinovic, S. (2004). Deep brain stimulation creates an informational lesion of the stimulated nucleus. NeuroReport, 15(7), 1137–1140.

    Article  PubMed  Google Scholar 

  • Grossman, Y., Parnas, I., & Spira, M. E. (1979). Differential conduction block in branches of a bifurcating axon. Journal of Physiology (London), 295, 283–305.

    CAS  Google Scholar 

  • Gustafsson, B., & Jankowska, E. (1976). Direct and indirect activation of nerve cells by electrical pulses applied extracellularly. Journal of Physiology, 258, 33–61.

    PubMed  CAS  Google Scholar 

  • Hanajima, R., Ashby, P., Lozano, A. M., Lang, A. E., & Chen, R. (2004). Single pulse stimulation of the human subthalamic nucleus facilitates the motor cortex at short intervals. Journal of Neurophysiology, 92, 1937–1943.

    Article  PubMed  Google Scholar 

  • Haslinger, B., Kalteis, K., Boecker, H., Alesch, F., & Ceballos-Baumann, A. O. (2005). Frequency-correlated decreases of motor cortex activity associated with subthalamic nucleus stimulation in Parkinson’s disease. NeuroImage, 28, 598–606.

    Article  PubMed  Google Scholar 

  • Hess, A., & Young, J. Z. (1949). Correlation of internodal length and fibre diameter in the central nervous system. Nature, 164, 490–491.

    Google Scholar 

  • Hildebrand, C., Remahl, S., Persson, H., & Bjartmar, C. (1993). Myelinated nerve fibres in the CNS. Progress in Neurobiology, 40, 319–384.

    Article  PubMed  CAS  Google Scholar 

  • Hines, M. L., & Carnevale, N. T. (2001). NEURON: A tool for neuroscientists. Neuroscientist, 7(2), 123–135.

    PubMed  CAS  Google Scholar 

  • Hoppe, D., Chvatal, A., Kettenmann, H., Orkand, R. K., & Ransom, B. R. (1991). Characteristics of activity-dependent potassium accumulation in mammalian peripheral nerve in vitro. Brain Research, 552, 106–112.

    Article  PubMed  CAS  Google Scholar 

  • Hursch, J. B. (1939). Conduction velocity and diameter of nerve fibers. American Journal of Physiology, 127, 131–139.

    Google Scholar 

  • Jankowska, E., Padel, Y., & Tanaka, R. (1975). The mode of activation of pyramidal tract cells by intracortical stimuli. Journal of Physiology, 249, 617–636.

    PubMed  CAS  Google Scholar 

  • Jech, R., Urgosik, D., Tintera, J., Nebuzelsky, A., Krasensky, J., Liscak, R., et al. (2001). Functional magnetic resonance imaging during deep brain stimulation: A pilot study in four patients with Parkinson’s disease. Movement Disorders, 16(4), 1126–1132.

    Article  PubMed  CAS  Google Scholar 

  • Joyner, R. W., Westerfield, M., & Moore, J. W. (1980). Effects of cellular geometry on current flow during a propagated action potential. Biophysical Journal, 31(2), 183–194.

    Article  PubMed  CAS  Google Scholar 

  • Kakei, S., N. A., J., & Shinoda, Y. (2001). Thalamic terminal morphology and distribution of single corticothalamic axons originating from layers 5 and 6 of the cat motor cortex. Journal of Comparative Neurology, 437(2), 170–185.

    Article  PubMed  CAS  Google Scholar 

  • Khattab, F. I. (1968). Branching of the nodal axon in the cerebral cortex of mice. Brain Research, 9(1), 149–151.

    Article  PubMed  CAS  Google Scholar 

  • Kitai, S. T., & Deniau, J. M. (1981). Cortical inputs to the subthalamus: Intracellular analysis. Brain Research, 214(2), 411–415.

    Article  PubMed  CAS  Google Scholar 

  • Kultas-Ilinsky, K., Sivan-Loukianova, E., & Ilinsky, L. A. (2003). Reevaluation of the primary motor cortex connections with the thalamus in primates. Journal of Comparative Neurology, 457(2), 133–158.

    Article  PubMed  Google Scholar 

  • Levesque, M., & Parent, A. (2005). The striatofugal fiber system in primates: A reevaluation of its organization based on single-axon tracing studies. Proceedings of the National Academy of Sciences, 102, 11888–11893.

    Article  CAS  Google Scholar 

  • Lieberman, A. R., Webster, K. E., & Spacek, J. (1972). Multiple myelinated branches from nodes of Ranvier in the central nervous system. Brain Research, 44(2), 652–655.

    Article  PubMed  CAS  Google Scholar 

  • Manor, Y., Koch, C., & Segev, I. (1991). Effect of geometrical irregularities on propagation delay in axonal trees. Biophysical Journal, 60(6), 1434–1437.

    Google Scholar 

  • McCreery, D. B., & Agnew, W. F. (1983). Changes in extracellular potassium and calcium concentration and neural activity during prolonged electrical stimulation of the cat cerebral cortex at defined charge densities. Experimental Neurology, 79, 371–396.

    Article  PubMed  CAS  Google Scholar 

  • McIntyre, C. C., Richardson, A. G., & Grill, W. M. (2002). Modeling the excitability of mammalian nerve fibers: Influence of afterpotentials on the recovery cycle. Journal of Neurophysiology, 87, 995–1006.

    PubMed  Google Scholar 

  • McIntyre, C. C., Grill, W. M., Sherman, D. L., & Thakor, N. V. (2004). Cellular effects of deep brain stimulation: Model-based analysis of activation and inhibition. Journal of Neurophysiology, 91, 1457–1469.

    Article  PubMed  Google Scholar 

  • Meeks, J. P., Jiang, X., & Mennerick, S. (2005). Action potential fidelity during normal and epileptiform activity in paired soma-axon recordings from rat hippocampus. Journal of Physiology, 566(2), 425–441.

    Article  PubMed  CAS  Google Scholar 

  • Montgomery, E. B. (2006). Effects of GPi stimulation on human thalamic neuronal activity. Clinical Neurophysiology, 117(12), 2691–2702.

    Article  PubMed  Google Scholar 

  • Mulloney, B., & Selverston, A. (1972). Antidromic action potentials fail to demonstrate known interactions between neurons. Science, 177, 69–72.

    Article  PubMed  CAS  Google Scholar 

  • Parent, M., & Parent, A. (2002). Axon collateralization in primate basal ganglia and related thalamic nuclei. Thalamus & Related Systems, 2, 71–86.

    Article  Google Scholar 

  • Parent, M., & Parent, A. (2004). The pallidofugal motor fiber system in primates. Parkinsonism & Related Disorders, 10, 203–211.

    Article  Google Scholar 

  • Parent, M., Levesque, M., & Parent, A. (1999). The pallidofugal projection system in primates: evidence for neurons branching ipsilaterally and contralaterally to the thalamus and brainstem. Journal of Chemical Neuroanatomy, 16, 153–165.

    Article  PubMed  CAS  Google Scholar 

  • Parnas, I. (1972). Differential block at high frequency at branches of a single axon innervating two muscles. Journal of Neurophysiology, 35, 903–914.

    PubMed  CAS  Google Scholar 

  • Parnas, I., & Segev, I. (1974). A mathematical model for conduction of action potentials along bifurcating axons. Journal of Physiology, 295, 323–343.

    Google Scholar 

  • Perlmutter, J. S., Mink, J. W., Bastian, A. J., Zackowski, K., Hershey, T., Miyawaki. E., et al. (2002). Blood flow responses to deep brain stimulation of thalamus. Neurology, 58, 1388–1394.

    PubMed  CAS  Google Scholar 

  • Pittman, Q. J. (1983). Increases in antidromic latency of neurohypophyseal neurons during sustained activation. Neuroscience Letter, 37, 239–243.

    Article  CAS  Google Scholar 

  • Ranck, J. B. Jr. (1975). Which elements are excited in electrical stimulation of mammalian central nervous system: A review. Brain Research, 98, 417–440.

    Article  Google Scholar 

  • Rattay, F., & Aberham, M. (1993). Modeling axon membranes for functional electrical stimulation. IEEE Transactions on Biomedical Engieering, 40, 1201–1209.

    Article  PubMed  CAS  Google Scholar 

  • Rubinstein, J. T. (1993). Axon termination conditions for electrical stimulation. IEEE Transactions on Biomedical Engineering, 40, 654–663.

    Article  PubMed  CAS  Google Scholar 

  • Saito, K. (1979). Branchings at the central node of Ranvier, observed in the anterior horn and Clarke’s nucleus of the cat. An electron microscopic study. Neuroscience, 4(3), 391–399.

    Article  PubMed  CAS  Google Scholar 

  • Sato, F., Lavallee, P., Levesque, M., & Parent, A. (2000a) Single-axon tracing study of neurons of the external segment of the globus pallidus in primate. Journal of Comparative Neurology, 417, 17–31.

    Article  PubMed  CAS  Google Scholar 

  • Sato, F., Parent, M., Levesque, M., & Parent, A. (2000b) Axonal branching pattern of neurons of the subthalamic nucleus in primates. Journal of Comparative Neurology, 424, 142–152.

    Article  PubMed  CAS  Google Scholar 

  • Shefi, O., Herl, A., Chklovskii, D. B., Ben-Jacob, E., & Ayali, A. (2004). Biophysical constraints on neuronal branching. Neurocomputing, 58–60, 487–495.

    Article  Google Scholar 

  • Spacek, J. (2000). Node of Ranvier. Atlas of Ultrastructural Neurocytology. Available at: http://synapses.mcg.edu/atlas/2_3_1_5.stm. Accessed on July 15, 2005.

  • Starr, P. A., Vitek, J. L., & Bakay, R. A. E. (1998). Deep brain stimulation for movement disorders. Neurosurgery Clinics of North America, 9, 381–402.

    PubMed  CAS  Google Scholar 

  • Tauc, L., & Hughes, G. M. (1964). Modes of initiation and propagation of spikes in the branching axons of molluscan central nervous system. Journal of General Physiology, 46, 533–549.

    Article  Google Scholar 

  • Tolias, A. S., Sultan, F., Augath, M., Oeltermann, A., Tehovnik, E. J., Schiller, P. H., et al. (2005). Mapping cortical activity elicited with electrical microstimulation using FMRI in the macaque. Neuron, 48, 901–911.

    Article  PubMed  CAS  Google Scholar 

  • Trost, M., Su, S., Su, P., Yen, R. F., Tseng, H. M., Barnes, A., et al. (2006). Network modulation by the subthalamic nucleus in the treatment of Parkinson’s disease. NeuroImage, 31(1), 301–307.

    Article  PubMed  Google Scholar 

  • Waxman, S. G., Kocsis, J. D., & Stys, P. K. (1995). The Axon. New York: Oxford University Press.

  • Welter, M. L., Houeto, J. L., Bonnet, A. M., Bejjani, P. B., Mesnage, V., Dormont, D., et al. (2004). Effects of high-frequency stimulation on subthalamic neuronal activity in parkinsonian patients. Archives of Neurology, 61, 89–96.

    Article  PubMed  Google Scholar 

  • Westerfield, M., Joyner, R. W., & Moore, J. W. (1978). Temperature-sensitive conduction failure at axon branch points. Journal of Neurophysiology, 41, 1–8.

    PubMed  CAS  Google Scholar 

  • Wu, Y. R., Levy, R., Ashby, P., Tasker, R. R., & Dostrovsky, J. O. (2001). Does stimulation of the GPi control dyskinesia by activating inhibitory axons? Movement Disordorders, 16, 208–216.

    Article  CAS  Google Scholar 

  • Zhou, L., & Chiu, S. Y. (2001). Computer model for action potential propagation through branch point in myelinated nerves. Journal of Neurophysiology, 85(1), 197–210.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grant R01 NS40894 from the National Institutes of Health. The authors thank Dr. Alan Dorval for critically reading the original manuscript before submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Warren M. Grill.

Additional information

This work was supported by grant R01 NS40894 from the National Institutes of Health.

Action Editor: David Terman

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grill, W.M., Cantrell, M.B. & Robertson, M.S. Antidromic propagation of action potentials in branched axons: implications for the mechanisms of action of deep brain stimulation. J Comput Neurosci 24, 81–93 (2008). https://doi.org/10.1007/s10827-007-0043-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-007-0043-9

Keywords

Navigation