Skip to main content
Log in

Saccade-related remapping of target representations between topographic maps: a neural network study

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

The goal of this study was to explore how a neural network could solve the updating task associated with the double-saccade paradigm, where two targets are flashed in succession and the subject must make saccades to the remembered locations of both targets. Because of the eye rotation of the saccade to the first target, the remembered retinal position of the second target must be updated if an accurate saccade to that target is to be made. We trained a three-layer, feed-forward neural network to solve this updating task using back-propagation. The network’s inputs were the initial retinal position of the second target represented by a hill of activation in a 2D topographic array of units, as well as the initial eye orientation and the motor error of the saccade to the first target, each represented as 3D vectors in brainstem coordinates. The output of the network was the updated retinal position of the second target, also represented in a 2D topographic array of units. The network was trained to perform this updating using the full 3D geometry of eye rotations, and was able to produce the updated second-target position to within a 1° RMS accuracy for a set of test points that included saccades of up to 70°. Emergent properties in the network's hidden layer included sigmoidal receptive fields whose orientations formed distinct clusters, and predictive remapping similar to that seen in brain areas associated with saccade generation. Networks with the larger numbers of hidden-layer units developed two distinct types of units with different transformation properties: units that preferentially performed the linear remapping of vector subtraction, and units that performed the nonlinear elements of remapping that arise from initial eye orientation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. While networks with 9 and 25 HLUs showed consistent clustering into two groups with orthogonal receptive field boundaries, networks with 100 HLUs show consistent clustering into three groups oriented at 60° intervals, networks with 49 HLUs showed either two or three groups. The principle of the mechanism for generating a hill of activation using three clusters is the same as using two: the output hill is generated at the location where the ridge of excitatory contributions generated by each cluster intersect.

  2. This vector-subtraction, linear remapping is not exactly the same as the canonical vector-subtraction model. In the latter it is the retinal position of the saccade target rather than the motor error of the saccade that is being subtracted. It is similar, however, since the two are closely related.

  3. In our paradigm, the torsional angles for initial eye orientation and saccade motor error for all training and test points were always equal in magnitude and opposite in sign. The torsional sensitivity vectors of these two input quantities were in a ratio of −1:2 with a Pearson r magnitude of >0.99 for all HLUs and in all network trials. This 1:2 ratio arose out of the encoding ratio of saccade motor error to initial eye orientation, where the range of motor error was twice that of eye orientation for the full range of input unit activations. We confirmed that this was the cause by varying the encoding ratio to 1:3, 1:4, and 2:3 in several trials. The torsional sensitivity vectors emerged with consistent ratios of -0.35 ± 0.04, -0.25 ± 0.02, and -0.66 ± 0.03.

  4. There is no reason to believe that the three-fold clustering at 60° intervals to be a limit in the angular regularities observed in motor error sensitivity vectors. Whether higher-level clustering, say four-fold clustering at with clusters at 45° intervals, might occur in networks with more than 100 HLUs, this depends on whether the benefit of such clustering would be significant compared to fully-unclustered HLUs. As the angular spread within each cluster approaches the inter-cluster angular interval, then both utility and definition of clustering disappears and clustering would not appear.

References

  • Andersen, R. A., Bracewell, R. M., Barash, S., Gnadt, J. W., & Fogassi, L. (1990). Eye position effects on visual, memory, and saccade-related activity in areas LIP and 7a of macaque. Journal of Neuroscience, 10, 1176–1196.

    PubMed  CAS  Google Scholar 

  • Andersen, R. A., Essick, G. K., & Siegel, R. M. (1985). Encoding of spatial location by posterior parietal neurons. Science, 230, 456–458.

    Article  PubMed  CAS  Google Scholar 

  • Batista, A. P., Buneo, C. A., Snyder, L. H., & Andersen, R. A. (1999). Reach plans in eye-centered coordinates. Science, 285, 257–260.

    Article  PubMed  CAS  Google Scholar 

  • Batschelet, E. (1981). Circular statistics in biology. London, UK: Academic.

    Google Scholar 

  • Ben Hamed, S., Duhamel, J. R., Bremmer, F., & Graf, W. (2001). Representations of the visual field in the laterial intraparietal area of macaque monkeys: A quantitative receptive field analysis. Experimental Brain Research, 140, 127–144.

    Article  CAS  Google Scholar 

  • Cassanello, C. R., & Ferrera, V. P. (2007). Computing vector differences using a gain field-like mechanism in monkey frontal eye field. Journal of Physiology [epub ahead of print].

  • Colby, C. L., Duhamel, J. R., & Goldberg, M. E. (1995). Oculocentric spatial representation in parietal cortex. Cerebral Cortex, 5, 470–481.

    Article  PubMed  CAS  Google Scholar 

  • Colby, C. L., & Goldberg, M. E. (1999). Space and attention in parietal cortex. Annual Review of Neuroscience, 22, 319–349.

    Article  PubMed  CAS  Google Scholar 

  • Crawford, J. D. (1994). The oculomotor neural integrator uses a behavior-related coordinate system. Journal of Neuroscience, 14, 6911–6923.

    PubMed  CAS  Google Scholar 

  • Crawford, J. D., & Vilis, T. (1992). Symmetry of oculomotor burst neuron coordinates about Listing’s plane. Journal of Neurophysiology, 68, 432–448.

    PubMed  CAS  Google Scholar 

  • Cynader, M., & Berman, N. (1972). Receptive-field organization of monkey superior colliculus. Journal of Neurophysiology, 35, 187–201.

    PubMed  CAS  Google Scholar 

  • Duhamel, J. R., Colby, C. L., & Goldberg, M. E. (1992). The updating of the representation of visual space in parietal cortex by intended eye movements. Science, 255, 90–92.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg, M. E., & Bruce, C. J. (1990). Primate frontal eye fields. III. Maintenance of a spatially accurate saccade signal. Journal of Neurophysiology, 64, 489–508.

    PubMed  CAS  Google Scholar 

  • Hallett, P. E., & Lightstone, A. D. (1976). Saccadic eye movements towards stimuli triggered by prior saccades. Vision Research, 16, 107–114.

    Article  PubMed  CAS  Google Scholar 

  • Heiser, L. M., & Colby, C. L. (2005). Spatial updating in area LIP is independent of saccade direction. Journal of Neurophysiology, 95, 2751–5767.

    Article  PubMed  Google Scholar 

  • Howard, I. P. (1982). Human visual orientation. New York: Wiley.

    Google Scholar 

  • Isa, T. (2002). Intrinsic processing in the mammalian superior colliculus. Current Opinion in Neurobiology, 12, 668–677.

    Article  PubMed  CAS  Google Scholar 

  • Keith, G. P., Blohm, G., & Crawford, J. D. (2006a). A recurrent neural network for trans-saccadic spatial updating produces receptive field remapping and suppressed moving hills. Poster session 500, Presented at the Vision Sciences Society, 6th Annual Meeting, Sarasota, FL.

  • Keith, G. P., Smith, M. A., & Crawford, J. D. (2006b). Functional organization within a neural network trained to update target representations across 3-D saccades. Journal of Computational Neuroscience, 22(2), 191–209.

    Google Scholar 

  • Keith, G. P., Wang, H., & Crawford, J. D. (2005). A recurrent neural network model of the temporal dynamics of spatial remapping. Poster session 287.14, Presented at the Society for Neuroscience 35th Annual Meeting, Washington, DC.

  • Klier, E. M., Wang, H., & Crawford, J. D. (2001). The superior colliculus encodes gaze commands in retinal coordinates. Nature Neuroscience, 4, 627–632.

    Article  PubMed  CAS  Google Scholar 

  • Klier, E. M., Wang, H., & Crawford, J. D. (2003). Three-dimensional eye-head coordination is implemented downstream from the superior colliculus. Journal of Neurophysiology, 89, 2839–2853.

    Article  PubMed  Google Scholar 

  • Krommenhoek, K. P., van Opstal, A. J., Gielen, C. C. A. M., & van Gisbergen, J. A. M. (1993). Remapping of neural activity in the motor colliculus: A neural network study. Vision Research, 33, 1287–1298.

    Article  PubMed  CAS  Google Scholar 

  • Mays, L. E., & Sparks, D. L. (1980a). Dissociation of visual and saccade-related responses in superior colliculus neurons. Journal of Neurophysiology, 43, 207–232.

    CAS  Google Scholar 

  • Mays, L. E., & Sparks, D. L. (1980b). Saccades are spatially, not retinocentrically, coded. Science, 208, 1163–1165.

    Article  CAS  Google Scholar 

  • Medendorp, W. P., Smith, M. A., Tweed, D. B., & Crawford, J. D. (2002). Rotational remapping in human spatial memory during eye and head motion. Journal of Neuroscience, 22(RC196), 1–4.

    Google Scholar 

  • Meredith, M. A., & Ramoa, A. S. (1998). Intrinsic circuitry of the superior colliculus: Pharmacophysiological identification of horizontally oriented inhibitory interneurons. Journal of Neurophysiology, 79, 1597–1602.

    PubMed  CAS  Google Scholar 

  • Munoz, D. P., & Wurtz, R. H. (1995a). Saccade-related activity in monkey superior colliculus. I. Characteristics of burst and build-up neurons. Journal of Neurophysiology, 73, 2313–2333.

    CAS  Google Scholar 

  • Munoz, D. P., & Wurtz, R. H. (1995b). Saccade-related activity in monkey superior colliculus. II. Spread of activity during saccades. Journal of Neurophysiology, 73, 2334–2348.

    CAS  Google Scholar 

  • Nakamura, K., & Colby, C. L. (2002). Updating of the visual representation in monkey striate and extrastriate cortex during saccades. Proceedings of National Academy Science United States of America, 99, 4026–4031.

    Article  CAS  Google Scholar 

  • Paré, M., & Wurtz, R. H. (1997). Monkey posterior parietal cortex neurons antidromically activated from superior colliculus. Journal of Neurophysiology, 78, 3493–3497.

    PubMed  Google Scholar 

  • Quaia, C., Optican, L. M., & Goldberg, M. E. (1998). The maintenance of spatial accuracy by the perisaccadic remapping of visual receptive fields. Neural Networks, 11, 1229–1240.

    Article  PubMed  Google Scholar 

  • Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323, 533–536.

    Article  Google Scholar 

  • Russo, G. S., & Bruce, C. J. (1996). Neurons in the supplementary eye field of the rhesus monkeys code visual targets and saccadic eye movements in an oculocentric coordinate system. Journal of Neurophysiology, 76, 825–848.

    PubMed  CAS  Google Scholar 

  • Sabes, P. N., Breznen, B., & Andersen, R. A. (2002). Parietal representation of object-based saccades. Journal of Neurophysiology, 88, 1815–1829.

    PubMed  Google Scholar 

  • Smith, M. A., & Crawford, J. D. (2001). Implications of ocular kinematics for the internal updating of visual space. Journal of Neurophysiology, 86, 2112–2127.

    PubMed  CAS  Google Scholar 

  • Smith, M. A., & Crawford, J. D. (2005). A distributed population mechanism for the 3-D oculomotor reference frame transformation. Journal of Neurophysiology, 93, 1742–1761.

    Article  PubMed  Google Scholar 

  • Sommer, M. A., & Wurtz, R. H. (2000). Composition and topographic organization of signals sent from the frontal eye field to the superior colliculus. Journal of Neurophysiology, 83, 1979–2001.

    PubMed  CAS  Google Scholar 

  • Sommer, M. A., & Wurtz, R. H. (2004). What the brain stem tells the frontal cortex. II. Role of the SC-MD-FEF pathway in corollary discharge. Journal of Neurophysiology, 91, 1403–1423.

    Article  PubMed  Google Scholar 

  • Sparks, D. L. (1988). Neural cartography: Sensory and motor maps in the superior colliculus. Brain Behavior and Evolution, 31, 49–56.

    Article  CAS  Google Scholar 

  • Sparks, D. L. (1989). The neural encoding of the location of targets for saccadic eye movements. Journal of Experimental Biology, 146, 195–207.

    PubMed  CAS  Google Scholar 

  • Sparks, D. L. (2002). The brainstem control of saccadic eye movements. Nature Reviews Neuroscience, 3, 952–964.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, Y., Buttner-Ennever, J. A., Straumann, D., Hepp, K., Hess, B. J. M., & Henn, V. (1995) Deficits in torsional and vertical rapid eye movements and shift of Listing's plane after uni- and bilateral lesions of the rostral interstitial nucleus of the medial longitudinal fasciculus. Experimental Brain Research, 106(2), 215–232.

    Article  Google Scholar 

  • Their, P., & Andersen, R. A. (1998). Electrical microstimulation distinguishes distinct saccade-related areas in the posterior parietal cortex. Journal of Neurophysiology, 80, 1713–1785.

    PubMed  CAS  Google Scholar 

  • Tweed, D. B., & Vilis, T. (1990). Geometric relations of eye position and velocity vectors during saccades. Vision Research, 30, 111–127.

    Article  PubMed  CAS  Google Scholar 

  • Tweed, D. B., Cadera, W., & Vilis, T. (1990). Computing three-dimensional eye position quaternions and eye velocity from search coil signals. Vision Research, 30, 97–110.

    Article  PubMed  CAS  Google Scholar 

  • Umeno, M. M., & Goldberg, M. E. (1997). Spatial processing in the monkey frontal eye field I. Predictive visual responses. Journal of Neurophysiology, 78, 1373–1383.

    PubMed  CAS  Google Scholar 

  • Umeno, M. M., & Goldberg, M. E. (2001). Spatial processing in the monkey frontal eye field II. Memory responses. Journal of Neurophysiology, 86, 2344–2352.

    PubMed  CAS  Google Scholar 

  • Walker, M. F., Fitzgibbon, E. J., & Goldberg, M. E. (1995). Neurons in the monkey superior colliculus predict the result of impending saccadic eye movements. Journal of Neurophysiology, 73, 1988–2003.

    PubMed  CAS  Google Scholar 

  • White, R. L. III, & Snyder, L. H. (2004). A neural network model of flexible spatial updating. Journal of Neurophysiology, 91, 1608–1619.

    Article  PubMed  Google Scholar 

  • Xing, J., & Andersen, R. A. (2000). Memory activity of LIP neurons for sequential eye movements simulated with neural networks. Journal of Neurophysiology, 84, 651–665.

    PubMed  CAS  Google Scholar 

  • Zee, D. S., Optican, L. M., Cook, J. D., & Robinson, D. A. (1976). Slow saccades in spinocerebellar degeneration. Archivos de Neurobiologia, 33, 243–251.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science and Engineering Research Council of Canada (NSERC). G.P. Keith was supported by an OGS scholarship. J.D. Crawford was supported by a Canada Research Chair.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Douglas Crawford.

Additional information

Action Editors: Barry J. Richmond and Alain Destexhe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keith, G.P., Crawford, J.D. Saccade-related remapping of target representations between topographic maps: a neural network study. J Comput Neurosci 24, 157–178 (2008). https://doi.org/10.1007/s10827-007-0046-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-007-0046-6

Keywords

Navigation