Skip to main content
Log in

Transition between two excitabilities in mesencephalic V neurons

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Neurons can make different responses to identical inputs. According to the emerging frequency of repetitive firing, neurons are classified into two types: type 1 and type 2 excitability. Though in mathematical simulations, minor modifications of parameters describing ionic currents can result in transitions between these two excitabilities, empirical evidence to support these theoretical possibilities is scarce. Here we report a joint theoretical and experimental study to test the hypothesis that changes in parameters describing ionic currents cause predictable transitions between the two excitabilities in mesencephalic V (Mes V) neurons. We developed a simple mathematical model of Mes V neurons. Using bifurcation analysis and model simulation, we then predicted that changes in conductance of two low-threshold currents would result in transitions between type 1 and type 2. Finally, by applying specific channel blockers, we observed the transition between two excitabilities forecast by the mathematical model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Del Negro, C. A., & Chandler, S. H. (1997). Physiological and theoretical analysis of K+ currents controlling discharge in neonatal rat mesencephalic trigeminal neurons. Journal of Neurophysiology, 77, 537–553.

    PubMed  Google Scholar 

  • Ermentrout, B. (1996). Type I membranes, phase resetting curves, and synchrony. Neural Computation, 8, 979–1001.

    PubMed  CAS  Google Scholar 

  • Ermentrout, B., Pascal, M., & Gutkin, B. (2001). The effects of spike frequency adaptation and negative feedback on the synchronization of neural oscillators. Neural Computation, 13, 1285–1310.

    Article  PubMed  CAS  Google Scholar 

  • Guckenheimer, J., Harris-Warrick, R., Peck, J., & Willms, A. (1997). Bifurcation, bursting, and spike frequency adaptation. Journal of Computational Neuroscience, 4, 257–277.

    Article  PubMed  CAS  Google Scholar 

  • Gutkin, B. S., & Ermentrout, G. B. (1998). Dynamics of membrane excitability determine interspike interval variability: A link between spike generation mechanisms and cortical spike train statistics. Neural Computation, 10, 1047–1065.

    Article  PubMed  CAS  Google Scholar 

  • Gutkin, B. S., Ermentrout, G. B., & Reyes, A. D. (2005). Phase-response curves give the responses of neurons to transient inputs. Journal of Neurophysiology, 94, 1623–1635.

    Article  PubMed  Google Scholar 

  • Hansel, D., Mato, G., & Meunier, C. (1995). Synchrony in excitatory neural networks. Neural Computation, 7, 307–337.

    Article  PubMed  CAS  Google Scholar 

  • Henderson, G., Pepper, C. M., & Shefner, S. A. (1982). Electrophysiological properties of neurons contained in the locus coeruleus and mesencephalic nucleus of the trigeminal nerve in vitro. Experimental Brain Research, 45, 29–37.

    Article  PubMed  CAS  Google Scholar 

  • Hodgkin, A. L. (1948). The local electric changes associated with repetitive action in a non-medullated axon. Journal of Physiology, 107, 165–181.

    PubMed  CAS  Google Scholar 

  • Izhikevich, E. M. (2000). Neural excitability, spiking and bursting. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 10, 1171–1266.

    Article  Google Scholar 

  • Izhikevich, E. M. (2007). Dynamical systems in neuroscience: The geometry of excitability and bursting. Cambridge, MA: MIT.

    Google Scholar 

  • Morris, C., & Lecar, H. (1981). Voltage oscillations in the barnacle giant muscle fiber. Biophysical Journal, 35, 193–213.

    Article  PubMed  CAS  Google Scholar 

  • Prinz, A. A., Abbott, L. F., & Marder, E. (2004). The dynamic clamp comes of age. Trends in Neurosciences, 27, 218–224.

    Article  PubMed  CAS  Google Scholar 

  • Rinzel, J., Ermentrout, B. (1998). Analysis of neural excitability and oscillations. In C. Koch, I. Segev (Eds.), Methods in neuronal modeling: From ions to networks (pp. 251–291). Cambridge, MA: MIT.

    Google Scholar 

  • Robinson, H. P., & Harsch, A. (2002). Stages of spike time variability during neuronal responses to transient inputs. Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 66, 061902.

    Google Scholar 

  • Robinson, H. P., & Kawai, N. (1993). Injection of digitally synthesized synaptic conductance transients to measure the integrative properties of neurons. Journal of Neuroscience Methods, 49, 157–165.

    Article  PubMed  CAS  Google Scholar 

  • Schurr, A., West, C. A., & Rigor, B. M. (1988). Lactate-supported synaptic function in the rat hippocampal slice preparation. Science, 240, 1326–1328.

    Article  PubMed  CAS  Google Scholar 

  • Sharp, A., O’Neil, M., Abbott, L., & Marder, E. (1993a). Dynamic clamp: Computer-generated conductances in real neurons. Journal of Neurophysiology, 69, 992–995.

    PubMed  CAS  Google Scholar 

  • Sharp, A., O’Neil, M., Abbott, L., & Marder, E. (1993b). The dynamic clamp: Artificial conductances in biological neurons. Trends in Neurosciences, 16, 389–394.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, S., Wu, N., Hsaio, C. F., Turman Jr., J., & Chandler, S. H. (2003). Development of inward rectification and control of membrane excitability in mesencephalic V neurons. Journal of Neurophysiology, 89, 1288–1298.

    Article  PubMed  Google Scholar 

  • Wu, N., Enomoto, A., Tanaka, S., Hsiao, C. F., Nykamp, D. Q., Izhikevich, E., et al. (2005). Persistent sodium currents in mesencephalic V neurons participate in burst generation and control of membrane excitability. Journal of Neurophysiology, 93, 2710–2722.

    Article  PubMed  CAS  Google Scholar 

  • Wu, N., Hsiao, C. F., & Chandler, S. H. (2001). Membrane resonance and subthreshold membrane oscillations in mesencephalic V neurons: Participants in burst generation. Journal of Neuroscience, 21, 3729–3739.

    PubMed  CAS  Google Scholar 

  • Zhang, L., & Krnjevic, K. (1993). Whole-cell recording of anoxic effects on hippocampal neurons in slices. Journal of Neurophysiology, 69, 118–127.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank John Rinzel, Bard Ermentrout, Eugene M. Izhikevich and Wu Nanping for the useful discussions. This work was supported by grants from NSFC (30530260) of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yihui Liu.

Additional information

Action Editor: G. Bard Ermentrout

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Yang, J. & Hu, S. Transition between two excitabilities in mesencephalic V neurons. J Comput Neurosci 24, 95–104 (2008). https://doi.org/10.1007/s10827-007-0048-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-007-0048-4

Keywords

Navigation