Skip to main content
Log in

Distributed representation of perceptual categories in the auditory cortex

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Categorical perception is a process by which a continuous stimulus space is partitioned to represent discrete sensory events. Early experience has been shown to shape categorical perception and enlarge cortical representations of experienced stimuli in the sensory cortex. The present study examines the hypothesis that enlargement in cortical stimulus representations is a mechanism of categorical perception. Perceptual discrimination and identification behaviors were analyzed in model auditory cortices that incorporated sound exposure-induced plasticity effects. The model auditory cortex with over-representations of specific stimuli exhibited categorical perception behaviors for those specific stimuli. These results indicate that enlarged stimulus representations in the sensory cortex may be a mechanism for categorical perceptual learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Reference

  • Anderson, J. A., Silverstein, J. W., Ritz, S. A., & Jones, R. S. (1977). Distinctive features, categorical perception, and probability learning: some applications of a neural model. Psychological Review, 84, 413–451.

    Article  Google Scholar 

  • Bala, A. D., Spitzer, M. W., & Takahashi, T. T. (2003). Prediction of auditory spatial acuity from neural images on the owl's auditory space map. Nature, 424(6950), 771–774.

    Article  PubMed  CAS  Google Scholar 

  • Bao, S., Chan, V. T., & Merzenich, M. M. (2001). Cortical remodelling induced by activity of ventral tegmental dopamine neurons. Nature, 412(6842), 79–83.

    Article  PubMed  CAS  Google Scholar 

  • Bao, S., Chang, E. F., Woods, J., & Merzenich, M. M. (2004). Temporal plasticity in the primary auditory cortex induced by operant perceptual learning. Nature Neuroscience, 7(9), 974–981.

    Article  PubMed  CAS  Google Scholar 

  • Beitel, R. E., Schreiner, C. E., Cheung, S. W., Wang, X., & Merzenich, M. M. (2003). Reward-dependent plasticity in the primary auditory cortex of adult monkeys trained to discriminate temporally modulated signals. Proceedings of the National Academy of Sciences of the United States of America, 100(19), 11070–11075.

    Article  PubMed  CAS  Google Scholar 

  • Blake, D. T., Heiser, M. A., Caywood, M., & Merzenich, M. M. (2006). Experience-dependent adult cortical plasticity requires cognitive association between sensation and reward. Neuron, 52(2), 371–381.

    Article  PubMed  CAS  Google Scholar 

  • Bornstein, M. H., Kessen, W., & Weiskopf, S. (1976). The categories of hue in infancy. Science, 191(4223), 201–202.

    Article  PubMed  CAS  Google Scholar 

  • Brown, M., Irvine, D. R., & Park, V. N. (2004). Perceptual learning on an auditory frequency discrimination task by cats: association with changes in primary auditory cortex. Cerebral Cortex, 14(9), 952–965.

    Article  PubMed  Google Scholar 

  • Burns, E. M., & Ward, W. D. (1978). Categorical perception–phenomenon or epiphenomenon: evidence from experiments in the perception of melodic musical intervals. Journal of the Acoustical Society of America, 63(2), 456–468.

    Article  PubMed  CAS  Google Scholar 

  • Chang, E. F., & Merzenich, M. M. (2003). Environmental noise retards auditory cortical development. Science, 300(5618), 498–502.

    Article  PubMed  CAS  Google Scholar 

  • Cherniak, C. (1990). The bounded brain: toward quantitive neuroanatomy. Journal of Cognitive Neuroscience, 2, 58–68.

    Article  Google Scholar 

  • Chowdhury, S. A., & Suga, N. (2000). Reorganization of the frequency map of the auditory cortex evoked by cortical electrical stimulation in the big brown bat. Journal of Neurophysiology, 83(4), 1856–1863.

    PubMed  CAS  Google Scholar 

  • Crozier, J. B. (1997). Absolute pitch: practice makes perfect, the earlier the better. Psychology of Music, 25, 110–119.

    Article  Google Scholar 

  • Dayan, P., & Abbott, L. F. (2001). Theoretical Neuroscience. Cambridge, MA: The MIT Press.

    Google Scholar 

  • DeWeese, M. R., Wehr, M., & Zador, A. M. (2003). Binary spiking in auditory cortex. Journal of Neuroscience, 23(21), 7940–7949.

    PubMed  CAS  Google Scholar 

  • Edeline, J. M., & Weinberger, N. M. (1993). Receptive field plasticity in the auditory cortex during frequency discrimination training: selective retuning independent of task difficulty. Behavioral Neuroscience, 107(1), 82–103.

    Article  PubMed  CAS  Google Scholar 

  • Ehret, G. (1992). Categorical perception of mouse-pup ultrasounds in the temporal domain. Animal Behaviour, 43(3), 409–416.

    Article  Google Scholar 

  • Ehret, G., & Haack, B. (1981). Categorical perception of mouse pup ultrasound by lactating females. Naturwissenschaften, 68(4), 208–209.

    Article  PubMed  CAS  Google Scholar 

  • Eimas, P. D. (1974). Auditory and linguistic processing of cues for place of articulation by infants. Perception & Psychophysics, 16, 564–570.

    Google Scholar 

  • Engineer, N. D., Percaccio, C. R., Pandya, P. K., Moucha, R., Rathbun, D. L., & Kilgard, M. P. (2004). Environmental enrichment im-proves response strength, threshold, selectivity, and latency of auditory cortex neurons. Journal of Neurophysiology, 92(1), 73–82.

    Article  PubMed  Google Scholar 

  • Erickson, C. A., Jagadeesh, B., & Desimone, R. (2000). Clustering of perirhinal neurons with similar properties following visual experience in adult monkeys. Nature Neuroscience, 3(11), 1143–1148.

    Article  PubMed  CAS  Google Scholar 

  • Freedman, D. J., Riesenhuber, M., Poggio, T., & Miller, E. K. (2001). Categorical representation of visual stimuli in the primate prefrontal cortex. Science, 291(5502), 312–316.

    Article  PubMed  CAS  Google Scholar 

  • Fritz, J., Shamma, S., Elhilali, M., & Klein, D. (2003). Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex. Nature Neuroscience, 6(11), 1216–1223.

    Article  PubMed  CAS  Google Scholar 

  • Goldstone, R. (1994). Influences of categorization on perceptual discrimination. Journal of Experimental Psychology General, 123(2), 178–200.

    Article  PubMed  CAS  Google Scholar 

  • Green, D. M., & Swets, J. A. (1966). Singal detection theory and psychophysics. New York: Wiley.

    Google Scholar 

  • Grier, J. B. (1971). Nonparametric indexes for sensitivity and bias: computing formulas. Psychological Bulletin, 75(6), 424–429.

    Article  PubMed  CAS  Google Scholar 

  • Harnad, S. R. (1987). Categorical perception: the groundwork of cognition. Cambridge: Cambridge University Press.

    Google Scholar 

  • Harnad, S. (2003). Categorical perception. In L. Nadel (Ed.), Encyclopedia of cognitive science. London: Macmillan.

  • Harnad, S., Hanson, S. J., & Lubin, J. (1991). Categorical perception and the evolution of supervised learning in neural nets. In L. Reeker (Ed.), Working Papers of the AAAI Spring Symposium on Machine Learning of Natural Language and Ontology. pp. 65–74. Standford, CA.

  • Holt, L. L., Lotto, A. J., & Diehl, R. L. (2004). Auditory discontinuities interact with categorization: implications for speech perception. Journal of the Acoustical Society of America, 116(3), 1763–1773.

    Article  PubMed  Google Scholar 

  • Jazayeri, M., & Movshon, J. A. (2006). Optimal representation of sensory information by neural populations. Nature Neuroscience, 9(5), 690–696.

    Article  PubMed  CAS  Google Scholar 

  • Kilgard, M. P., & Merzenich, M. M. (1998). Cortical map reorganization enabled by nucleus basalis activity. Science, 279(5357), 1714–1718.

    Article  PubMed  CAS  Google Scholar 

  • Kilgard, M. P., Pandya, P. K., Vazquez, J., Gehi, A., Schreiner, C. E., & Merzenich, M. M. (2001). Sensory input directs spatial and temporal plasticity in primary auditory cortex. Journal of Neurophysiology, 86(1), 326–338.

    PubMed  CAS  Google Scholar 

  • Kluender, K. R., Diehl, R. L., & Killeen, P. R. (1987). Japanese quail can learn phonetic categories. Science, 237(4819), 1195–1197.

    Article  PubMed  CAS  Google Scholar 

  • Kuhl, P. K., & Miller, J. D. (1975). Speech perception by the chinchilla: Voiced-voiceless distinction in alveolar plosive consonants. Science, 190(4209), 69–72.

    Article  PubMed  CAS  Google Scholar 

  • Kuhl, P. K., & Padden, D. M. (1982). Enhanced discriminability at the phonetic boundaries for the voicing feature in macaques. Perception & Psychophysics, 32(6), 542–550.

    CAS  Google Scholar 

  • Kuhl, P. K., & Padden, D. M. (1983). Enhanced discriminability at the phonetic boundaries for the place feature in macaques. Journal of the Acoustical Society of America, 73(3), 1003–1010.

    Article  PubMed  CAS  Google Scholar 

  • Kuhl, P. K., Williams, K. A., Lacerda, F., Stevens, K. N., & Lindblom, B. (1992). Linguistic experience alters phonetic perception in infants by 6 months of age. Science, 255(5044), 606–608.

    Article  PubMed  CAS  Google Scholar 

  • Lasky, R. E., Syrdal-Lasky, A., & Klein, R. E. (1975). VOT discrimination by four to six and a half month old infants from Spanish environments. Journal of Experimental Child Psychology, 20(2), 215–225.

    Article  PubMed  CAS  Google Scholar 

  • Liberman, A. M., Harris, K. S., Hoffman, H. S., & Griffith, B. C. (1957). The discrimination of speech sounds within and across phoneme boundaries. Journal of Experimental Psychology, 54(5), 358–368.

    Article  PubMed  CAS  Google Scholar 

  • Liberman, A. M., Cooper, F. S., Shankweiler, D. P., & Studdert-Kennedy, M. (1967). Perception of the speech code. Psychological Review, 74(6), 431–461.

    Article  PubMed  CAS  Google Scholar 

  • Livingston, K. R., Andrews, J. K., & Harnad, S. (1998). Categorical perception effects induced by category learning. Journal of Experimental Psychology. Learning, Memory, and Cognition, 24(3), 732–753.

    Article  PubMed  CAS  Google Scholar 

  • Luna, R., Hernandez, A., Brody, C. D., & Romo, R. (2005). Neural codes for perceptual discrimination in primary somatosensory cortex. Nature Neuroscience, 8(9), 1210–1219.

    Article  PubMed  CAS  Google Scholar 

  • Ma, X., & Suga, N. (2003). Augmentation of plasticity of the central auditory system by the basal forebrain and/or somatosensory cortex. Journal of Neurophysiology, 89(1), 90–103.

    Article  PubMed  Google Scholar 

  • MacKay, I. R., Flege, J. E., Piske, T., & Schirru, C. (2001). Category restructuring during second-language speech acquisition. Journal of the Acoustical Society of America, 110(1), 516–528.

    Article  PubMed  CAS  Google Scholar 

  • Massaro, D. W. (1987). Categorical partition: A fussy logical model of categorical behavior. In S. Harnad (Ed.), Categorical perception: the groundwork of cognition. pp. 254–283, Cambridge, UK: Cambrige University Press.

    Google Scholar 

  • Naatanen, R., Lehtokoski, A., Lennes, M., Cheour, M., Huotilainen, M., Iivonen, A., et al. (1997). Language-specific phoneme representations revealed by electric and magnetic brain responses. Nature, 385(6615), 432–434.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, D. A., & Marler, P. (1989). Categorical perception of a natural stimulus continuum: birdsong. Science, 244(4907), 976–978.

    Article  PubMed  CAS  Google Scholar 

  • Ohl, F. W., & Scheich, H. (1996). Differential frequency conditioning enhances spectral contrast sensitivity of units in auditory cortex (field Al) of the alert Mongolian gerbil. European Journal of Neuroscience, 8(5), 1001–1017.

    Article  PubMed  CAS  Google Scholar 

  • O’Kusky, J., & Colonnier, M. (1982). A laminar analysis of the number of neurons, glia, and synapses in the adult cortex (area 17) of adult macaque monkeys. Journal of Comparative Neurology, 210(3), 278–290.

    Article  PubMed  CAS  Google Scholar 

  • Pantev, C., Oostenveld, R., Engelien, A., Ross, B., Roberts, L. E., & Hoke, M. (1998). Increased auditory cortical representation in musicians. Nature, 392(6678), 811–814.

    Article  PubMed  CAS  Google Scholar 

  • Paradiso, M. A. (1988). A theory for the use of visual orientation information which exploits the columnar structure of striate cortex. Biological Cybernetics, 58(1), 35–49.

    Article  PubMed  CAS  Google Scholar 

  • Pollack, L., & Norman, D. A. (1964). A non-parametric analysis of recognition experiments. Psychonomet Sci, 1, 125–126.

    Google Scholar 

  • Polley, D. B., Heiser, M. A., Blake, D. T., Schreiner, C. E., & Merzenich, M. M. (2004). Associative learning shapes the neural code for stimulus magnitude in primary auditory cortex. Proceedings of the National Academy of Sciences of the United States of America, 101(46), 16351–16356.

    Article  PubMed  CAS  Google Scholar 

  • Polley, D. B., Steinberg, E. E., & Merzenich, M. M. (2006). Perceptual learning directs auditory cortical map reorganization through top–down influences. Journal of Neuroscience, 26(18), 4970–4982.

    Article  PubMed  CAS  Google Scholar 

  • Powell, M. J. D. (1977). A fast algorithm for nonlinearly constrained optimization calculations. In G. A. Watson (Ed.), Numerical analysis. New York: Springer.

  • Recanzone, G. H., Merzenich, M. M., Jenkins, W. M., Grajski, K. A., & Dinse, H. R. (1992). Topographic reorganization of the hand representation in cortical area 3b owl monkeys trained in a frequency-discrimination task. Journal of Neurophysiology, 67(5), 1031–1056.

    PubMed  CAS  Google Scholar 

  • Recanzone, G. H., Schreiner, C. E., & Merzenich, M. M. (1993). Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. Journal of Neuroscience, 13(1), 87–103.

    PubMed  CAS  Google Scholar 

  • Romo, R., Merchant, H., Zainos, A., & Hernandez, A. (1997). Categorical perception of somesthetic stimuli: psychophysical measurements correlated with neuronal events in primate medial premotor cortex. Cerebral Cortex, 7(4), 317–326.

    Article  PubMed  CAS  Google Scholar 

  • Schoups, A., Vogels, R., Qian, N., & Orban, G. (2001). Practising orientation identification improves orientation coding in V1 neurons. Nature, 412(6846), 549–553.

    Article  PubMed  CAS  Google Scholar 

  • Sengpiel, F., Stawinski, P., & Bonhoeffer, T. (1999). Influence of experience on orientation maps in cat visual cortex. Nature Neuroscience, 2(8), 727–732.

    Article  PubMed  CAS  Google Scholar 

  • Seung, H. S., & Sompolinsky, H. (1993). Simple models for reading neuronal population codes. Proceedings of the National Academy of Sciences of the United States of America, 90(22), 10749–10753.

    Article  PubMed  CAS  Google Scholar 

  • Steinschneider, M., Fishman, Y. I., & Arezzo, J. C. (2003). Representation of the voice onset time (VOT) speech parameter in population responses within primary auditory cortex of the awake monkey. Journal of the Acoustical Society of America, 114(1), 307–321.

    Article  PubMed  Google Scholar 

  • Takeuchi, A. H., & Hulse, S. H. (1993). Absolute pitch. Psychological Bulletin, 113(2), 345–361.

    Article  PubMed  CAS  Google Scholar 

  • Talwar, S. K., & Gerstein, G. L. (2001). Reorganization in awake rat auditory cortex by local microstimulation and its effect on frequency-discrimination behavior. Journal of Neurophysiology, 86(4), 1555–1572.

    PubMed  CAS  Google Scholar 

  • Wiesel, T. N. (1982). Postnatal development of the visual cortex and the influence of environment. Nature, 299(5884), 583–591.

    Article  PubMed  CAS  Google Scholar 

  • Williams, L. (1977). The perception of stop consonant voicing by Spanish–English bilinguals. Perception & Psychophysics, 21, 289–297.

    Google Scholar 

  • Wyttenbach, R. A., May, M. L., & Hoy, R. R. (1996). Categorical perception of sound frequency by crickets. Science, 273(5281), 1542–1544.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, K., Ginzburg, I., McNaughton, B. L., & Sejnowski, T. J. (1998). Interpreting neuronal population activity by reconstruction: unified framework with application to hippocampal place cells. Journal of Neurophysiology, 79(2), 1017–1044.

    PubMed  CAS  Google Scholar 

  • Zhang, L. I., Bao, S., & Merzenich, M. M. (2001). Persistent and specific influences of early acoustic environments on primary auditory cortex. Nature Neuroscience, 4(11), 1123–1130.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by a grant from US National Institute of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaowen Bao.

Additional information

Action Editor: Shihab Shamma

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, H., Bao, S. Distributed representation of perceptual categories in the auditory cortex. J Comput Neurosci 24, 277–290 (2008). https://doi.org/10.1007/s10827-007-0055-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-007-0055-5

Keywords

Navigation